Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

AbstractAverage concentrations of biota in the ocean are low, presenting a critical problem for ocean consumers. High-resolution sampling, however, demonstrates that the ocean is peppered with narrow hot spots of organism activity. To determine whether these resource aggregations could provide a significant solution to the ocean's food paradox, a conceptual graphical model was developed that facilitates comparisons of the role of patchiness in predator-prey interactions across taxa, size scales, and ecosystems. The model predicts that predators are more reliant on aggregated resources for foraging success when the average concentrations of resources is low, the size discrepancy between predator and prey is great, the predator has a high metabolic rate, and/or the predator's foraging time is limited. Size structure differences between marine and terrestrial food webs and a vast disparity in the overall mean density of their resources lead to the conclusion that high-density aggregations of prey are much more important to the survival of oceanic predators than their terrestrial counterparts, shaping the foraging decisions that are available to an individual and setting the stage on which evolutionary pressures can act. Patches of plenty may be rare, but they play an outsized role in behavioral, ecological, and evolutionary processes, particularly in the sea.

Download full-text PDF

Source
http://dx.doi.org/10.1086/727473DOI Listing

Publication Analysis

Top Keywords

food paradox
8
resource patchiness
4
patchiness resolution
4
resolution food
4
paradox sea
4
sea abstractaverage
4
abstractaverage concentrations
4
concentrations biota
4
biota ocean
4
ocean low
4

Similar Publications

Unlabelled: Mood disorders, including major depressive disorder (MDD) and bipolar disorder (BP), significantly impact global health, with MDD affecting over 300 million people and BP affecting approximately 2% of the world's population. Ketamine, originally an anesthetic, has emerged as a promising treatment for patients with treatment-resistant depression (TRD), due to its unique pharmacological properties, such as N-methyl-D-aspartate (NMDA) receptor antagonism and anti-inflammatory effects. The potential of ketamine in treating depression has sparked debate regarding its effects on appetite.

View Article and Find Full Text PDF

While PGPB have historically been applied in agriculture, their formal recognition in the last century has driven intensive research into their role as sustainable tools for improving crop yield and stress tolerance. As they are primarily sourced from wild or native environments, the widespread enthusiasm has led to heightened expectations surrounding their potential, often based on the assumption that biological solutions are inherently safer and more effective than synthetic inputs. However, despite their popularity, increasing reports of inconsistent or limited performance under real-world, field conditions have raised critical questions about their credibility as biofertilizers and biocontrol agents.

View Article and Find Full Text PDF

This study establishes diethyl maleate (DEM) as a novel physiologically relevant oxidative stress model for meat science, uniquely recapitulating gradual glutathione depletion during natural spoilage. Using quantitative proteomics and biochemical analyses (0-48 h postmortem), we demonstrate that DEM-induced stress paradoxically enhances beef colour stability despite accelerated glycolysis (pH 5.6 ± 0.

View Article and Find Full Text PDF

The current agricultural system faces the critical challenge of providing sustenance to the global population. There is a deep concern about the huge food demand and security driven by the burgeoning global population. Further, urbanization and modernization lead to a significant reduction in arable land, subsequently hindering crop production.

View Article and Find Full Text PDF

Background: The Food and Drug Administration has approved percutaneous atrial septal defect (ASD) and patent foramen ovale (PFO) closure devices for hemodynamically significant interatrial shunts, paradoxical emboli including stroke, and decompression sickness. We aimed to study the trends in utilization and reimbursements of transcatheter ASD/PFO closure devices.

Aim: To analyze trends in utilization and Medicare reimbursements for transcatheter ASD/PFO closure procedures from 2013 to 2022.

View Article and Find Full Text PDF