98%
921
2 minutes
20
Growing pumpkins in controlled environments, such as greenhouses, has become increasingly important due to the potential to optimise yield and quality. However, achieving optimal environmental conditions for pumpkin cultivation requires precise monitoring and control, which can be facilitated by modern sensor technologies. The objective of this study was to determine the optimal placement of sensors to determine the influence of external parameters on the maturity of pumpkins. The greenhouse used in the study consisted of a plastic film for growing pumpkins. Five different sensors labeled from A1 to A5 measured the air temperature, humidity, soil temperature, soil humidity, and illumination at five different locations. We used two methods, error-based sensor placement and entropy-based sensor placement, to evaluate optimisation. We selected A3 sensor locations where the monitored data were close to the reference value, i.e., the average data of all measurement locations and parameters. Using this method, we selected sensor positions to monitor the influence of external parameters on the maturity of pumpkins. These methods enable the determination of optimal sensor locations to represent the entire facility environment and detect areas with significant environmental disparities. Our study provides an accurate measurement of the internal environment of a greenhouse and properly selects the base installation locations of sensors in the pumpkin greenhouse.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781241 | PMC |
http://dx.doi.org/10.3390/s24010143 | DOI Listing |
J Behav Health Serv Res
September 2025
Department of Health Policy and Management, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, USA.
Telehealth is increasingly a standard and routine clinical option, indicating a changing outlook for SUD treatment from in-person to the more convenient option of telehealth. As populations across geographies increasingly prefer telehealth, more research is warranted that focuses on how where a person lives is associated with telehealth availability. The authors used the Mental Health and Addiction Treatment Tracking Repository (MATTR 2024) to identify telehealth availability among all known licensed SUD treatment facilities in the USA (N = 10,492 facilities).
View Article and Find Full Text PDFISA Trans
August 2025
Department of Vehicle Engineering and Jiangsu Engineering Research Center of Vehicle Distributed Drive and Intelligent Wire Control Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; Department of Vehicle Engineering and Jiangsu Engineering Research Center of Vehi
The steer-by-wire (SbW) system, as the core component of vehicle steering, needs to track the front wheel angle accurately. To mitigate the angle tracking accuracy degradation caused by D-Q axes coupling, time-varying motor electrical parameters, and load disturbance, a fractional-order adaptive fuzzy decentralized tracking control (FAFDTC) strategy is proposed in this paper. First, considering time-varying motor parameters, D-Q axes coupling, and fractional-order characteristics of components, a fractional-order SbW interconnected system is constructed to enhance its ability to characterize nonlinearities, time-varying dynamics, and system coupling.
View Article and Find Full Text PDFISA Trans
September 2025
School of Automation, Northwestern Polytechnical University,1 Dongxiang Road, Chang'an District, Xi'an, Shaanxi 710129, PR China. Electronic address:
A novel practical predefined-time sliding mode control strategy is proposed for the flight formation of a small tandem-rotor wheeled UAV (TRW-UAV) with unknown upper bound external disturbances and uncertainties in this paper. Firstly, a new predefined-time sliding mode surface is proposed to guide all errors of the position and velocity loops to converge to the origin in a predefined-time. Furthermore, a dynamic surface control approach is utilized to circumvent the higher-order differentiation when controlling the actuator loop.
View Article and Find Full Text PDFISA Trans
September 2025
School of Astronautics, Harbin Institute of Technology, Harbin, China. Electronic address:
For space missions such as extraterrestrial sample collection, robotic rover exploration, and astronaut landings, the complex terrain and diverse gravitational environments make ground-based micro-low-gravity experimental systems essential for testing and validating spacecraft performance as well as supporting astronaut training. The suspended gravity unloading (SGO) system is a key device commonly used to simulate micro-low-gravity environments. However, the SGO system faces challenges due to model uncertainty and external disturbances, which limit improvements in control accuracy.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
September 2025
Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain; Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University, Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain. Electronic
Pulmonary surfactant protein C (SP-C) may play a key role in alveolar homeostasis by modulating vesicle uptake in alveolar cells. This study explores how SP-C regulates internalization of model unilamellar lipid vesicles by type II alveolar epithelial cells (AECII) and alveolar macrophages (AMϕ), focusing on the effect of lipid composition, palmitoylation state, and interactions with external stimuli like lipopolysaccharides (LPS) or the other hydrophobic surfactant protein SP-B. Using fluorescence-based techniques, we demonstrated that SP-C enhances vesicle uptake in a lipid-dependent manner.
View Article and Find Full Text PDF