98%
921
2 minutes
20
The reactivity of metal surfaces is a cornerstone concept in chemistry, as metals have long been used as catalysts to accelerate chemical reactions. Although fundamentally important, the reactivity of metal surfaces has hitherto not been explicitly defined. For example, in order to compare the activity of two metal surfaces, a particular probe adsorbate, such as O, H, or CO, has to be specified, as comparisons may vary from probe to probe. Here we report that the metal surfaces actually have their own intrinsic/eigen reactivity, independent of any probe adsorbate. By employing unsupervised machine learning algorithms, specifically, principal component analysis (PCA), two dominant eigenvectors emerged from the binding strength dataset formed by 10 commonly used probes on 48 typical metal surfaces. According to their chemical characteristics revealed by vector decomposition, these two eigenvectors can be defined as the covalent reactivity and the ionic reactivity, respectively. Whereas the ionic reactivity turns out to be related to the work function of the metal surface, the covalent reactivity cannot be indexed by simple physical properties, but appears to be roughly connected with the valence-electron number normalized density of states at the Fermi level. Our findings expose that the metal surface reactivity is essentially a two-dimensional vector rather than a scalar, opening new horizons for understanding interactions at the metal surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2023.12.019 | DOI Listing |
Chem Commun (Camb)
September 2025
University of Belgrade-Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, Rebublic of Serbia.
Carbon aerogels and xerogels, with their 3D porous architectures, ultralow density, high surface area, and excellent conductivity, have emerged as multifunctional materials for energy and environmental applications. This review highlights recent advances in the synthesis of these materials polymerisation, drying, and carbonisation, as well as the role of novel precursors such as graphene, carbon nanotubes, and biomass. Emphasis is also placed on doped and metal-decorated carbon gels as efficient electrocatalysts for oxygen reduction reactions, enabling four- and two-electron pathways for energy conversion and the production of green HO, respectively.
View Article and Find Full Text PDFNanoscale
September 2025
Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, India.
The transition to a net-zero carbon economy hinges on the development of sustainable, efficient, and economically viable energy technologies. Here, we present a green, electricity-free auto-combustion synthesis of a multifunctional FeNi@MnO@C electrocatalyst, demonstrating outstanding performance for OER, HER, OWS, UOR, UOS, and OWS in alkaline seawater with a required potential of 1.45, 0.
View Article and Find Full Text PDFSmall Methods
September 2025
Department of Materials Science and Engineering, National Cheng Kung University, No. 1 University Road, Tainan, 70101, Taiwan.
Electron Fenton (EF) degradation often suffers from low in situ HO electrosynthesis and Fe regeneration. Herein, a novel multi-element oxide-sulfide heterostructure is reported, (FeVCoCuMn)O/(CuFeVCoMn)S, for efficient and stable EF degradation. The oxide-sulfide phase ratio is optimized through temperature control during the synthesis.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China.
Periprosthetic joint infection (PJI) represents a serious complication following joint arthroplasty, and it often results in implant failure, prolonged morbidity, and additional healthcare burdens. Current clinical strategies for PJI treatment face obstacles, including antibiotic resistance, high recurrence rate, and compromised bone repair. To address these challenges, a novel nanozyme-based coordination compound designated as W-GA-Van@Zn is developed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Institution Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), Madrid, 28049, Spain.
Achieving magnetic ordering in low-dimensional materials remains a key objective in the field of magnetism. Herein, coordination chemistry emerges as a powerful discipline to promote the stabilization of magnetism at the nanoscale. We present a thorough study of exemplary two-dimensional metal-organic nanoarchitectures synthesized on a Au(111) substrate, which are rationalized by using surface-science techniques and theoretical calculations.
View Article and Find Full Text PDF