98%
921
2 minutes
20
Utilizing covalent organic framework (COF) as a hypotoxic and porous scaffold to encapsulate enzyme (enzyme@COF) has inspired numerous interests at the intersection of chemistry, materials, and biological science. In this study, we report a convenient scheme for one-step, aqueous-phase synthesis of highly crystalline enzyme@COF biocatalysts. This facile approach relies on an ionic liquid (2 μL of imidazolium ionic liquid)-mediated dynamic polymerization mechanism, which can facilitate the in situ assembly of enzyme@COF under mild conditions. This green strategy is adaptive to synthesize different biocatalysts with highly crystalline COF "exoskeleton", as well evidenced by the low-dose cryo-EM and other characterizations. Attributing to the rigorous sieving effect of crystalline COF pore, the hosted lipase shows non-native selectivity for aliphatic acid hydrolysis. In addition, the highly crystalline linkage affords COF "exoskeleton" with higher photocatalytic activity for in situ production of H O , enabling us to construct a self-cascading photo-enzyme coupled reactor for pollutants degradation, with a 2.63-fold degradation rate as the poorly crystalline photo-enzyme reactor. This work showcases the great potentials of employing green and trace amounts of ionic liquid for one-step synthesis of crystalline enzyme@COF biocatalysts, and emphasizes the feasibility of diversifying enzyme functions by integrating the reticular chemistry of a COF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202319876 | DOI Listing |
Nature
September 2025
Research Center for Industries of the Future, Westlake University, Hangzhou, China.
The electrolyte-electrode interface serves as the foundation for a myriad of chemical and physical processes. In battery chemistry, the formation of a well-known solid-electrolyte interphase (SEI) plays a pivotal role in ensuring the reversible operations of rechargeable lithium-ion batteries (LIBs). However, characterizing the precise chemical composition of the low crystallinity and highly sensitive SEI presents a formidable challenge.
View Article and Find Full Text PDFEnviron Res
September 2025
Center for High Technology Development, Nguyen Tat Thanh University, Ho Chi Minh City Hi-Tech Park, Ho Chi Minh City, Vietnam; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam. Electronic address:
The development of novel multijunction heterostructure photocatalysts is critical for the efficient degradation of organic pollutants, attributed to their ability to enhance the separation of photogenerated electron-hole pairs. In our study, a ternary composite, melem/BiVO/g-CN (BVO/CNMH), was synthesized via an acid-soaking method followed by calcination, using g-CN as a sacrificial precursor in the presence of BiVO. This approach yielded a porous, interconnected architecture in BVO/CNMH.
View Article and Find Full Text PDFDiscov Nano
September 2025
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
Promoter-assisted chemical vapor deposition (CVD) has emerged as a robust strategy for the low-temperature synthesis of diverse transition metal dichalcogenides (TMDs). In these processes, promoter-induced intermediates facilitate specific reaction pathways, enabling controlled growth via vapor-solid-solid (VSS) or vapor-liquid-solid (VLS) modes. While previous studies have primarily focused on transition metal precursors, growth pathways involving engineered chalcogen-based intermediates remain underexplored due to their volatility and low melting points.
View Article and Find Full Text PDFChem Sci
August 2025
Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai - 400076 India
The supramolecular organization of functional molecules at the mesoscopic level influences their material properties. Typically, planar π-conjugated (disc- or linear-shaped) molecules tend to undergo one-dimensional (1D) stacking, whereas two-dimensional (2D) organization from such building blocks is seldom observed in spite of their technological potential. Herein, we rationally achieve both 1D and 2D organizations from a single planar, π-conjugated molecular system competitive interactions.
View Article and Find Full Text PDFInorg Chem
September 2025
Yunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemical and Materials Engineering, Qujing Normal University, Qujing 655011, China.
Sequential assembly of donor-acceptor components at the molecular level within a MOF is an effective strategy to achieve efficient electron-hole separation for enhancing the activity of photocatalysts. Meanwhile, the highly efficient and selective functionalization of tetrahydroisoquinoline (THIQ) under mild conditions remains an urgent demand in both the scientific and industrial communities. This work reports a donor-acceptor MOF photocatalyst () constructed by the coordinated assembly of donor and acceptor components, in which a naphthalene unit serves as an electron donor and a perylenediimide unit as an electron acceptor.
View Article and Find Full Text PDF