Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Tumor-derived exosomes (TEXs) play an important role in the development process of cancer, which can transport a large number of carcinogenic molecules to normal cells, and subsequently promote tumor metastasis. However, TEXs that were utilized in most of previous researches were obtained from the cell medium of tumor cell lines, which cannot reflect the physiological state of primary cells in vivo. Isolation of native TEXs from human plasma with intact function is contributed to exploring the interaction between TEXs and recipient cells for understanding their true biological functions.

Results: We developed a strategy that involves both capture and release processes to obtain native TEXs from plasma of cancer patients. An MoS-based immunomagnetic probe (FeO@MoS-Au-Aptamer, named as FMAA) with the advantages of high surface area, magnetic response and abundant affinity sites was designed and synthesized to capture TEXs through recognizing high-expression tumor-associated antigens of EpCAM. With the assistance of complementary sequences of EpCAM, TEXs were released with non-destruction and no residual labels. According to NTA analysis, 10-10 TEXs were recovered from per mL plasma of breast cancer patients. The interaction between native TEXs and normal epithelial cells confirms TEXs could induce significant activation of autophagy of recipient cells with co-culture for 12 h. Proteomics analysis demonstrated a total of 637 proteins inside epithelial cells had dynamic expression with the stimulation of TEXs and 5 proteins in the pathway of autophagy had elevated expression level.

Significance: This work not only obtains native TEXs from human plasma with non-destruction and no residual labels, but also explores the interaction between TEXs and recipient cells for understanding their true biological functions, which will accelerate the application of TEXs in the field of biomarkers and therapeutic drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2023.342109DOI Listing

Publication Analysis

Top Keywords

recipient cells
16
native texs
16
texs
14
human plasma
12
tumor-derived exosomes
8
exploring interaction
8
cells
8
texs human
8
interaction texs
8
texs recipient
8

Similar Publications

Dendritic cells-derived extracellular vesicles in tumourigenesis: From biological roles to clinical implications.

Cancer Lett

September 2025

Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China. Electronic address:

Dendritic cells (DCs) are the most powerful antigen-presenting cells (APCs) within the tumour microenvironment (TME), where they orchestrate T cell-mediated anti-tumour immunity and can also be reprogrammed to promote the progression of tumours in the TME. Extracellular vesicles (EVs) are very small and they are secreted by cells and wrapped in lipid bilayers that shuttle bioactive cargoes, including proteins, nucleic acids, and metabolites, to recipient cells, thereby influencing the progression of diseases, including cancer. DC-derived EVs (DC-EVs) play pivotal roles in the TME by mediating crosstalk with other immune and stromal cells to modulate inflammatory responses, angiogenesis, cell death, and immune evasion, thereby regulating the development and progression of tumours.

View Article and Find Full Text PDF

The claustrum (CLA) is a thin and elongated brain structure that is located between the insula and lateral striatum and is implicated in a wide range of behaviors. It is characterized by its extensive synaptic connectivity with multiple cortical regions. While CLA projection neurons are glutamatergic, several studies have shown an inhibitory impact of CLA on its cortical targets, suggesting the involvement of inhibitory cortical interneurons.

View Article and Find Full Text PDF

A Quantitative Assessment of the Phagocytosis of Allogeneic and Xenogeneic Erythrocytes by Rat Macrophages In Vitro.

J Vis Exp

August 2025

Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University; Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Chinese Academy of Medical Sciences; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedici

Xenogeneic cell transplantation often faces significant immune rejection, even in immunodeficient animal models. Among residual immune components, macrophages can actively phagocytose transplanted human cells, posing a challenge to long-term engraftment. To address this, we developed a standardized in vitro assay to quantify macrophage-mediated phagocytosis of human versus rat red blood cells (RBCs).

View Article and Find Full Text PDF

Extracorporeal Photopheresis Stimulates Tissue Repair after Transplantation.

Transplant Direct

September 2025

Laboratory for Transplantation Research, Department of Surgery, University Hospital Regensburg, Regensburg, Germany.

Extracorporeal photopheresis (ECP) is a safe and effective therapy with long-established indications in treating T cell-mediated immune diseases, including steroid refractory graft-versus-host disease and chronic rejection after heart or lung transplantation. The ECP procedure involves collecting autologous peripheral blood leucocytes that are driven into apoptosis before being reinfused intravenously. ECP acts primarily through in situ exposure of recipient dendritic cells and macrophages to apoptotic cells, which then suppress inflammation, promote specific regulatory T-cell responses, and retard fibrosis.

View Article and Find Full Text PDF

Extracorporeal Photopheresis: Does It Have a Potential Place Among Cell-based Therapies?

Transplant Direct

September 2025

Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria.

Extracorporeal photopheresis (ECP) is a therapeutic intervention for modulating immune responses using an autologous apoptotic cell-based product, known as a photopheresate. The process of generating photopheresates offers attractive possibilities for manipulating distinct leukocyte subsets to either augment or dampen immune responses, depending on the disease context. This review discusses current uses of ECP as a cell-based therapy and introduces possible strategies to enhance the potency of photopheresates.

View Article and Find Full Text PDF