98%
921
2 minutes
20
Cell-based therapies hold promise for many chronic conditions; however, the continued need for immunosuppression along with challenges in replacing cells to improve durability or retrieving cells for safety are major obstacles. We subcutaneously implanted a device engineered to exploit the innate transcapillary hydrostatic and colloid osmotic pressure generating ultrafiltrate to mimic interstitium. Long-term stable accumulation of ultrafiltrate was achieved in both rodents and nonhuman primates (NHPs) that was chemically similar to serum and achieved capillary blood oxygen concentration. The majority of adult pig islet grafts transplanted in non-immunosuppressed NHPs resulted in xenograft survival >100 days. Stable cytokine levels, normal neutrophil to lymphocyte ratio, and a lack of immune cell infiltration demonstrated successful immunoprotection and averted typical systemic changes related to xenograft transplant, especially inflammation. This approach eliminates the need for immunosuppression and permits percutaneous access for loading, reloading, biopsy, and recovery to de-risk the use of "unlimited" xenogeneic cell sources to realize widespread clinical translation of cell-based therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776017 | PMC |
http://dx.doi.org/10.1126/sciadv.adi4919 | DOI Listing |
Leukemia
September 2025
University Children's Hospital Zurich, Pediatric Oncology and Children's Research Center, Zurich, Switzerland.
Acute lymphoblastic leukemia (ALL) preferentially localizes in the bone marrow (BM) and displays recurrent patterns of medullary and extra-medullary involvement. Leukemic cells exploit their niche for propagation and survive selective pressure by chemotherapy in the BM microenvironment, suggesting the existence of protective mechanisms. Here, we established a three-dimensional (3D) BM mimic with human mesenchymal stromal cells and endothelial cells that resemble vasculature-like structures to explore the interdependence of leukemic cells with their microenvironment.
View Article and Find Full Text PDFMethods Cell Biol
September 2025
LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia. Electronic address:
Breast cancer (BC) represents a major socio-economic challenge worldwide due to its high morbidity and mortality rates. Despite various therapeutic strategies, the heterogeneity of breast cancer and the resistance of tumour cells often lead to treatment failure. Consequently, the use of animal models of BC is crucial for understanding the cellular and molecular mechanisms involved in the different stages of carcinogenesis and for screening new drugs to assess their efficacy, potential safety and side effects.
View Article and Find Full Text PDFInflamm Res
September 2025
Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, China.
Background: The roles of long non-coding RNAs (lncRNAs) in the progression of various human tumors have been extensively studied. However, their specific mechanisms and therapeutic potential in Triple-Negative Breast Cancer (TNBC) remain to be fully elucidated.
Materials And Methods: The qRT-PCR assay was utilized to assess the relative mRNA levels of TFAP2A-AS1, PHGDH, and miR-6892.
Br J Cancer
September 2025
School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
Background: Activin A/Smad signaling plays an important role in promoting cancer stemness and chemoresistance in pancreatic ductal adenocarcinoma (PDAC), however the precise regulation on the termination of this pathway has not been fully understood.
Methods: LncRNA SLC7A11-AS1 interacting proteins were identified through RNA pull-down followed by LC-MS/MS. The protein interaction was analyzed by co-immunoprecipitation.
Signal Transduct Target Ther
September 2025
State Key Laboratory of Molecular Oncology & Department of Medical Oncology & Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Small-cell lung cancer (SCLC), an aggressive neuroendocrine tumor strongly associated with exposure to tobacco carcinogens, is characterized by early dissemination and dismal prognosis with a five-year overall survival of less than 7%. High-frequency gain-of-function mutations in oncogenes are rarely reported, and intratumor heterogeneity (ITH) remains to be determined in SCLC. Here, via multiomics analyses of 314 SCLCs, we found that the ASCL1/MKI67 and ASCL1/CRIP2 clusters accounted for 74.
View Article and Find Full Text PDF