Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Oxygen minimum zones (OMZs) are expanding due to increased sea surface temperatures, subsequent increased oxygen demand through respiration, reduced oxygen solubility, and thermal stratification driven in part by anthropogenic climate change. Devil's Hole, Bermuda is a model ecosystem to study OMZ microbial biogeochemistry because the formation and subsequent overturn of the suboxic zone occur annually. During thermally driven stratification, suboxic conditions develop, with organic matter and nutrients accumulating at depth. In this study, the bioavailability of the accumulated dissolved organic carbon (DOC) and the microbial community response to reoxygenation of suboxic waters was assessed using a simulated overturn experiment. The surface inoculated prokaryotic community responded to the deep (formerly suboxic) 0.2 μm filtrate with cell densities increasing 2.5-fold over 6 days while removing 5 μmol L of DOC. After 12 days, the surface community began to shift, and DOC quality became less diagenetically altered along with an increase in SAR202, a Chloroflexi that can degrade recalcitrant dissolved organic matter (DOM). Labile DOC production after 12 days coincided with an increase of a chemoautotrophic ammonia oxidizing archaea (AOA) that converts ammonia to nitrite based on the ammonia monooxygenase () gene copy number and nutrient data. In comparison, the inoculation of the deep anaerobic prokaryotic community into surface 0.2 μm filtrate demonstrated a die-off of 25.5% of the initial inoculum community followed by a 1.5-fold increase in cell densities over 6 days. Within 2 days, the prokaryotic community shifted from a dominated assemblage to a surface-like heterotrophic community devoid of . The DOM quality changed to less diagenetically altered material and coincided with an increase in the ribulose-1,5-bisphosphate carboxylase/oxygenase form I () gene number followed by an influx of labile DOM. Upon reoxygenation, the deep DOM that accumulated under suboxic conditions is bioavailable to surface prokaryotes that utilize the accumulated DOC initially before switching to a community that can both produce labile DOM via chemoautotrophy and degrade the more recalcitrant DOM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10765504PMC
http://dx.doi.org/10.3389/fmicb.2023.1287477DOI Listing

Publication Analysis

Top Keywords

prokaryotic community
12
bioavailable surface
8
surface prokaryotes
8
simulated overturn
8
oxygen minimum
8
devil's hole
8
hole bermuda
8
suboxic conditions
8
organic matter
8
dissolved organic
8

Similar Publications

Overflow metabolism refers to the widespread phenomenon of cells excreting metabolic by-products into their environment. Although overflow is observed in virtually all living organisms, it has been studied independently and given different names in different species. This review highlights emerging evidence that overflow metabolism is governed by common principles in prokaryotic and eukaryotic organisms.

View Article and Find Full Text PDF

Metagenomic analysis reveals genetic coupling between TonB-dependent transporters and extracellular enzymes in coastal bacterial communities.

Mar Life Sci Technol

August 2025

State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China.

Unlabelled: Marine heterotrophic prokaryotes initially release extracellular enzymes to cleave large organic molecules and then take up ambient substrates via transporters. Given the direct influence of extracellular enzymes on nutrient availability, understanding their diversity and dynamics is crucial in comprehending microbial interactions and organic matter cycling in aquatic ecosystems. In this study, metagenomics was employed to investigate the functional diversity and dynamics of extracellular enzymes and transporters in coastal waters over a 22-day period.

View Article and Find Full Text PDF

Microbial communities play a crucial role in the functioning of freshwater ecosystems but are continuously threatened by climate change and anthropogenic activities. Elevated temperatures and salinisation are particularly challenging for freshwater habitats, but little is known about how microbial communities respond to the simultaneous exposure to these stressors. Here, we use mesocosm experiments and amplicon sequencing data to investigate the responses of pelagic and benthic microbial communities to temperature and salinity increases, both individually and in combination.

View Article and Find Full Text PDF

Unmanaged plastic waste in Sub-Saharan Africa pollutes large areas and degrades into microplastics. Surfaces of microplastic are colonized by bacteria and fungi, resulting in the plastisphere. Plastispheres from high population hotspots on the African continent enrich pathogenic fungi, posing a potential threat to human health.

View Article and Find Full Text PDF

Microalgal-bacterial biofilm could realize synergistic pollutants removal, CO sequestration, and resource transformation from wastewater. Pre-designed biofilm with clear microbial composition would benefit resource transformation, yet little is known about its nutrients removal performance under axenic conditions, not to mention the comparison with non-axenic conditions over extended operation. To fill in this knowledge gap, this study first investigated the growth characteristics and nutrients removal performances of a pre-designed microalgae dominant biofilm.

View Article and Find Full Text PDF