Deep learning of heart-sound signals for efficient prediction of obstructive coronary artery disease.

Heliyon

Department of Cardiology, First Afliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, 830000, China.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Due to the limitations of current methods for detecting obstructive coronary artery disease (CAD), many individuals are mistakenly or unnecessarily referred for coronary angiography (CAG).

Objectives: Our goal is to create a comprehensive database of heart sounds in CAD and develop accurate deep learning algorithms to efficiently detect obstructive CAD based on heart sound signals. This will enable effective screening before undergoing CAG.

Methods: We included 320 subjects suspected of CAD who underwent CAG. We employed advanced filtering techniques and state-of-the-art deep learning models (VGG-16, 1D CNN, and ResNet18) to analyze the heart sound signals and identify obstructive CAD (defined as at least one ≥50 % stenosis). To assess the performance of our models, we prospectively recruited an additional 80 subjects for testing.

Results: In the test set, VGG-16 exhibited the highest performance with an area under the ROC curve (AUC) of 0.834 (95 % CI, 0.736-0.930), while ResNet-18 and CNN-7 achieved AUCs of only 0.755 (95 % CI, 0.614-0.819) and 0.652 (95 % CI, 0.554-0.770) respectively. VGG-16 demonstrated a sensitivity of 80.4 % and specificity of 86.2 % in the test set. The combined diagnostic model of VGG and DF scores achieved an AUC of 0.915 (95 % CI: 0.855-0.974), and the AUC for VGG combined with PTP scores was 0.908 (95 % CI: 0.845-0.971). The sensitivity and specificity of VGG-16 exceeded 0.85 in patients with coronary artery occlusion and those with 3 vascular lesions.

Conclusions: Our deep learning model, based on heart sounds, offers a non-invasive and efficient screening method for obstructive CAD. It is expected to significantly reduce the number of unnecessary referrals for downstream screening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10758826PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e23354DOI Listing

Publication Analysis

Top Keywords

deep learning
16
coronary artery
12
obstructive cad
12
obstructive coronary
8
artery disease
8
heart sounds
8
based heart
8
heart sound
8
sound signals
8
test set
8

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.

View Article and Find Full Text PDF

Use of artificial intelligence for classification of fractures around the elbow in adults according to the 2018 AO/OTA classification system.

BMC Musculoskelet Disord

September 2025

Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.

Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.

Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.

View Article and Find Full Text PDF

Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.

Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.

View Article and Find Full Text PDF

Ultra-fast charging stations (UFCS) present a significant challenge due to their high power demand and reliance on grid electricity. This paper proposes an optimization framework that integrates deep learning-based solar forecasting with a Genetic Algorithm (GA) for optimal sizing of photovoltaic (PV) and battery energy storage systems (BESS). A Gated Recurrent Unit (GRU) model is employed to forecast PV output, while the GA maximizes the Net Present Value (NPV) by selecting optimal PV and BESS sizes tailored to weekday and weekend demand profiles.

View Article and Find Full Text PDF