98%
921
2 minutes
20
Codon usage bias (CUB) refers to different codons exhibiting varying frequencies of usage in the genome. Studying CUB is crucial for understanding genome structure, function, and evolutionary processes. Herein, we investigated the codon usage patterns and influencing factors of protein-coding genes in the chloroplast genomes of four sister genera (monophyletic and , and monophyletic and ) from the Zingiberaceae family with contrasting habitats in southwestern China. These genera exhibit distinct habitats, providing a unique opportunity to explore the adaptive evolution of codon usage. We conducted a comprehensive analysis of nucleotide composition and codon usage on protein-coding genes in the chloroplast genomes. The study focused on understanding the relationship between codon usage and environmental adaptation, with a particular emphasis on genes associated with photosynthesis. Nucleotide composition analysis revealed that the overall G/C content of the coding genes was ˂ 48%, indicating an enrichment of A/T bases. Additionally, synonymous and optimal codons were biased toward ending with A/U bases. Natural selection is the primary factor influencing CUB characteristics, particularly photosynthesis-associated genes. We observed differential gene expressions related to light adaptation among sister genera inhabiting different environments. Certain codons were favored under specific conditions, possibly contributing to gene expression regulation in particular environments. This study provides insights into the adaptive evolution of these sister genera by analyzing CUB and offers theoretical assistance for understanding gene expression and regulation. In addition, the data support the relationship between RNA editing and CUB, and the findings shed light on potential research directions for investigating adaptive evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10758403 | PMC |
http://dx.doi.org/10.3389/fpls.2023.1304264 | DOI Listing |
Mol Biol Rep
September 2025
ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, India.
Background: Labeo fimbriatus (Bloch, 1795) is a medium-sized South Asian minor carp with ecological significance and emerging aquaculture potential, particularly in polyculture systems with Indian major carps. Despite its wide distribution, it remains underrepresented in phylogenetic studies, and limited genomic resources are available. Here, we report the complete mitochondrial genome sequence of L.
View Article and Find Full Text PDFPlant Commun
September 2025
College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Molecular phylogenetics illustrates the evolution and divergence of green plants by employing sequence data from various sources. Interestingly, phylogenetic reconstruction based on mitochondrial genes tends to exhibit incongruence with those derived from nuclear and chloroplast genes. Although the uniparental inheritance and conservatively retained protein-coding genes of mitochondrial genomes inherently exclude certain potential factors that affect phylogenetic reconstruction, such as hybridization and gene loss, the utilization of mitochondrial genomes for phylogeny and divergence time estimation remains limited.
View Article and Find Full Text PDFJ Biol Chem
September 2025
Department of Chemistry and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, 27109. Electronic address:
The AUA isoleucine codon is generally rare and used with varying frequency in bacterial genomes. The tRNA responsible for decoding this trinucleotide must be modified at the wobble position by tRNA lysidine synthetase (TilS) prior to aminoacylation and accommodation at the ribosome. To test the hypothesis that TilS catalytic efficiency correlates with AUA frequency, we cloned tilS genes from bacteria with varying AUA codon usage.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China.
Red root disease in rubber trees, caused by , is a prevalent and severe soil-borne disease in rubber tree cultivation areas. The pathogen exhibits complex infections, with multiple transmission pathways, making the disease highly concealed and difficult to diagnose in its early stages. As a result, prevention and control are challenging, posing a serious threat to rubber production.
View Article and Find Full Text PDFArtemisinin has long been a first-line antimalarial. Yet, its mode of action is still poorly understood. Emergence of artemisinin-resistant strains highlight the importance of addressing this question so as to develop better drugs and overcome resistance.
View Article and Find Full Text PDF