Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A new noninvasive core-thermometry technique, based on the use of two heat flux sensors with different very low thermal resistances, is proposed. Thermodynamically derived equations, using a pair of skin temperatures and heat fluxes detected from the sensors, can give the estimated deep body temperature (DBT) together with thermal resistance of the skin tissue itself. The validity and accuracy of this method are firstly investigated through in vitro experiments using a tissue phantom model and, secondly, as in vivo comparisons with sublingual (T) or rectal temperature (T) measurements in 9 volunteers, attaching the sensors around the upper sternum or the nape. Model experiments showed a good agreement between the measured and estimated temperatures, ranging from approximately 36 to 42 ℃. In vivo experiments demonstrated linear correlations between the estimated DBT and both T and T values, though the estimated DBT was 0.13 ℃ higher than T and 0.42 ℃ lower than T on average. The results also strongly suggested the possibility to estimate the tissue thermal resistance; this is discussed herein. Although further in vivo experiments under various environmental conditions are necessary, this method appears highly promising as an accurate, useful and convenient core-thermometry system for medical and healthcare settings.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-023-02991-zDOI Listing

Publication Analysis

Top Keywords

thermal resistance
12
deep body
8
resistance skin
8
skin tissue
8
vivo experiments
8
estimated dbt
8
noninvasive technique
4
technique heat-flux-based
4
heat-flux-based deep
4
body thermometry
4

Similar Publications

Background And Aim: Probiotic viability remains a critical challenge during gastrointestinal (GI) transit, storage, and feed processing. Conventional encapsulation materials often fail under acidic and thermal stress. This study aimed to develop and characterize a novel, eco-friendly microencapsulation system using (FP) seed extract as a natural encapsulating matrix for (LP) WU2502, enhancing its functional resilience and storage stability.

View Article and Find Full Text PDF

Decades of antibiotic misuse have spurred an antimicrobial resistance crisis, creating an urgent demand for alternative treatment options. Although phototherapy has therapeutic potential, the efficacy of the most advanced photosensitizers (PS) is essentially limited by aggregation-induced quenching, which significantly reduces their therapeutic effect. To address these challenges, we developed a cationic metallocovalent organic framework (CRuP-COF) via a solvent-mediated dual-reaction synthesis strategy.

View Article and Find Full Text PDF

Heterojunctions have garnered significant attention in the field of photocatalysis due to their exceptional ability to facilitate the separation of photogenerated charge carriers and their high efficiency in hydrogen reaction. However, their overall photocatalytic performance is often constrained by electron transport rates and suboptimal hydrogen adsorption/desorption kinetics. To address these challenges, this study develops a g-CN/MoS@MoC dual-effect synergistic solid-state Z-type heterojunction, synthesized through the in-situ sulfurization of MoC combined with ultrasonic self-assembly technique.

View Article and Find Full Text PDF

Li/CF primary batteries are renowned for their exceptional energy density, yet their practical deployment is hindered by the inherently sluggish kinetics of the CF cathode. This study addresses this limitation by incorporating selenium (Se) into CF (denoted as CF/Se) via a facile low-temperature thermal treatment, significantly enhancing its electrochemical performance. Comprehensive spectroscopic and electrochemical analyses reveal that Se doping induces the formation of CSe bonds, which promote semi-ionic CF bonding, thereby accelerating Li diffusion and reducing charge transfer resistance.

View Article and Find Full Text PDF

The processes of thermoforming 2D-printed electronics into 3D structures can introduce defects that impact the electrical performance of conductors, making them more susceptible to thermal failure during high electrical power/current applications on temperature-sensitive substrates. We therefore report the use of a thin-film boron nitride nanotube (BNNT) interlayer to directly reduce heat stress on linear and serpentine metallic traces on polycarbonate substrates thermoformed to 3D spherocylindrical geometries at varying elongation percentages. We demonstrate that the BNNT interlayer helps to improve the electrical conductivity of highly elongated thermoformed 3D traces in comparison to traces on bare polycarbonate.

View Article and Find Full Text PDF