98%
921
2 minutes
20
Wood vinegar (WV) is known to retard the release of ammonium (NH) from urea by inhibiting urea hydrolysis. However, the effect of WV on nitrogen leaching in soil is not known, and there are few studies on the effect of WV on microbial activity although WV exhibits antibacterial properties against pathogens in agriculture. Therefore, the purpose of this study was to investigate the effect of WV on controlling nitrogen leaching and soil microbial activity. Soils were treated with urea and WV, and the available inorganic nitrogen concentrations in the soil were compared with those from soils treated with N-(n-butyl)thiophosphoric triamide (NBPT), a commonly used urease inhibitor. The nitrate concentration in the soil was significantly decreased in the WV treatment, although the ammonium concentration was not affected by the WV treatment. Basal soil respiration was significantly increased in the WV and NBPT treatments although the microbial biomass was increased in the urea only treatment. The ammonium nitrogen concentration in the leachate was not significantly different in the WV and urea-treated soil compared to the urea-only treatment. However, the nitrate leaching increased in the soil treated only with urea at 16 days after the treatment although there was no statistically significant difference in the total leached nitrate. Therefore, WV can be used to reduce nitrogen leaching and enhance soil microbial activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-31517-1 | DOI Listing |
Appl Environ Microbiol
September 2025
College of Life Sciences, Northwest Normal University, Lanzhou, China.
Nitrogen leaching is a major pathway of nitrogen fertilizer loss. Although arbuscular mycorrhizal (AM) fungi are known to reduce nitrogen leaching by improving plant nitrogen uptake, the soil-based mechanisms remain unclear. A pot experiment was conducted using a randomized complete block design, with four nitrogen levels (0, 3.
View Article and Find Full Text PDFSmall Methods
September 2025
Research Center for Analysis and Measurement, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China.
Platinum and non-precious metal (PtM) alloy multimetallic catalysts have been developed to address the kinetically sluggish oxygen reduction reaction (ORR) occurring at the cathodes of proton exchange membrane fuel cells (PEMFCs). However, these catalysts inevitably suffer from poor lot-to-lot consistency of chemical compositions and structures during production, and the transition metal leaching in practical applications. Thus, the development of high-performance monometallic Pt catalysts using innovative nanoarchitectures has become important to address the technical challenges that hinder the widespread deployment of the PEMFCs.
View Article and Find Full Text PDFEnviron Pollut
August 2025
College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China. Electronic address:
Groundwater plays a pivotal role in mediating nitrogen transfer to aquatic ecosystems, particularly in arid regions. Water scarcity, coupled with intensive agricultural activities, has placed the groundwater systems under significant pressure from non-point source pollution, underscoring the need for targeted investigation. Focusing on the Chinese Loess Plateau (CLP), we combined dual-isotope analysis (δN-NO, δO-NO) with water isotopes (δD-HO, δO-HO) and implemented a dual-framework approach to investigate nitrate dynamics.
View Article and Find Full Text PDFJ Environ Qual
August 2025
Department of Agroecology, Aarhus University, Aarhus, Denmark.
Nitrogen Leaching Estimation System version 5 (NLES5) is an empirical model extensively used for estimating annual nitrate leaching from the root zone. The model is based on leaching data obtained by multiplying the measured nitrate concentration below the root zone depth by the percolation calculated using a hydrological model, which together provides estimates of annual nitrate leaching from the root zone. However, this approach has some limitations, including redundancy and unclear error propagation in the relationship between nitrate concentration and percolation without considering seasonal variability.
View Article and Find Full Text PDFGels
August 2025
School of Agriculture and Food Sustainability, The University of Queensland, Brisbane 4072, Australia.
Hydrogels are widely known for their ability to increase soil water retention and for their potential slow nutrient release mechanism. They have been constantly improved to meet the growing demand for sustainability in agriculture. Research focused on the development of biodegradable hydrogels, produced from industrial cellulose waste, are an ecological and efficient alternative soil ameliorant for the improvement of agricultural land.
View Article and Find Full Text PDF