Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Leafy sweet potato is a new type of sweet potato, whose leaves and stems are used as green vegetables. However, sweet potato tips can be affected by pre-harvest factors, especially the intensity of light. At present, intercropping, greenhouse planting, and photovoltaic agriculture have become common planting modes for sweet potato. Likewise, they can also cause insufficient light conditions or even low light stress. This research aimed to evaluate the influence of four different shading levels (no shading, 30%, 50%, and 70% shading degree) on the growth profile of sweet potato leaves. The net photosynthetic rate, chlorophyll pigments, carbohydrates, and polyphenol components were determined. Our findings displayed that shading reduced the content of the soluble sugar, starch, and sucrose of leaves, as well as the yield and Pn. The concentrations of Chl a, Chl b, and total Chl were increased and the Chl a/b ratio was decreased for the more efficient interception and absorption of light under shading conditions. In addition, 30% and 50% shading increased the total phenolic, total flavonoids, and chlorogenic acid. Transcriptome analysis indicated that genes related to the antioxidant, secondary metabolism of phenols and flavonoids, photosynthesis, and MAPK signaling pathway were altered in response to shading stresses. We concluded that 30% shading induced a high expression of antioxidant genes, while genes related to the secondary metabolism of phenols and flavonoids were upregulated by 50% shading. And the MAPK signaling pathway was modulated under 70% shading, and most stress-related genes were downregulated. Moreover, the genes involved in photosynthesis, such as chloroplast development, introns splicing, and Chlorophyll synthesis, were upregulated as shading levels increased. This research provides a new theoretical basis for understanding the tolerance and adaptation mechanism of leafy sweet potato in low light environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10742944PMC
http://dx.doi.org/10.3390/genes14122112DOI Listing

Publication Analysis

Top Keywords

sweet potato
28
shading
12
leafy sweet
12
influence shading
8
potato leaves
8
low light
8
shading levels
8
30% 50%
8
70% shading
8
50% shading
8

Similar Publications

Background And Aim: Purple sweet potatoes ( var. Ayamurasaki) possess high nutritional potential due to their rich content of amino acids, minerals, and fatty acids. However, their nutritional profile can be further improved through fermentation.

View Article and Find Full Text PDF

, commonly known as sweet potato, is an increasingly valued functional food because of its vivid coloration and rich bioactive compounds, especially anthocyanins and carotenoids, such as ipomoeaxanthin. This review focuses on the bioavailability, mechanisms of action, and therapeutic potential of sweet potato-derived anthocyanins in diabetes and metabolic disorders. Anthocyanins, which are plant pigments, exhibit high antioxidant activity by scavenging free radicals and stimulating endogenous antioxidant enzymes such as catalase and superoxide dismutase, thereby protecting cellular structures from damage and reducing oxidative damage in vital metabolic organs such as the pancreas, liver, brain, and muscles.

View Article and Find Full Text PDF

Sweet potato foot rot disease caused by Diaporthe destruens (formerly Plenodomus destruens) severely affects the yield and quality of sweet potatoes. To gain basic knowledge on regulating the pathogen using indigenous soil bacteria, the following organic materials were applied to potted soils collected from a sweet potato field contaminated with D. destruens: Kuroihitomi (compost made from shochu waste and chicken manure), Soil-fine (material made by adsorbing shochu waste on rice bran), and rice bran.

View Article and Find Full Text PDF

Enhancing the branch density of starch through enzymatic modification is critical for improving its functional properties in various industrial applications. This study optimized the sequential enzymatic treatment of sweet potato starch using α-amylase (AA), β-amylase (BA), and transglucosidase (TG) to maximize the degree of branching (DB). Response Surface Methodology (RSM) was employed to evaluate the synergistic effects of enzyme concentrations and hydrolysis durations, identifying optimal conditions: AA (20.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the impact of different energy levels and ingredient ratios on the nasogastric tube patency of pureed diets, optimizing the formulations to meet the nutritional requirements of elderly nasogastric feeding patients while minimizing tube blockage risk.

Methods: The study followed the guidelines of the "Chinese Resident's Balanced Diet Pyramid" and formulated five different energy levels of pureed diets (900 kcal, 1200 kcal, 1500 kcal, 1800 kcal, and 2100 kcal) using natural food groups. The diets consisted of seven major food categories: cereals and tubers, vegetables, meats, milk, oil, salt, and fruits.

View Article and Find Full Text PDF