98%
921
2 minutes
20
Terrorist organizations have compelled security authorities of every nation to make an increasingly significant commitment toward mitigating the risk of mass casualties and severe financial and property damages. As a result, various security measures have been implemented, including the use of advanced equipment and an uptick in intelligence activities. One of the most effective tools that has yielded outstanding results is the use of explosive detection dogs (EDDs). The nature of EDDs demands a high level of sensitivity given the inherent danger and severity of real threat situations that may involve the risk of explosion. Moreover, the operating procedures for EDDs are unique and distinguishable from other forms of detection. We conducted a review to ensure a comprehensive understanding of the subject, highlighting the EDDs' personality profile, selection, training methods, performance, and employment, incorporating insights from diverse fields, conducting an analysis, and presenting a perspective on using EDDs to prevent explosion threats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10741240 | PMC |
http://dx.doi.org/10.3390/ani13243773 | DOI Listing |
Small
September 2025
Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia.
The demand for rapid, field-deployable detection of hazardous substances has intensified the search for plasmonic sensors with both high sensitivity and fabrication simplicity. Conventional approaches to plasmonic substrates, however, often rely on lithographic precision or complex chemistries limiting scalability and reproducibility. Here, a facile, one-step synthesis of vertically aligned 2D nanosheets composed of intergrown CuO/CuO crystallites is presented, fabricated via oxygen plasma discharge on copper substrates.
View Article and Find Full Text PDFTalanta
September 2025
Warsaw University of Technology, Faculty of Chemistry, Chair of Analytical Chemistry, Noakowskiego St. 3, 00-664, Warsaw, Poland. Electronic address:
The contamination of agricultural soils with military-grade explosives such as 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazaccyclohexane (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclohexane (HMX) is an emerging concern in post-conflict regions, where food crops may take up these compounds. This study presents a novel analytical approach for detecting explosive residues in wheat (Triticum aestivum L.) grown on contaminated substrates.
View Article and Find Full Text PDFPLoS One
September 2025
School of Nuclear Science and Technology, University of South China Hengyang, Hunan, China.
With the rapid development of the nuclear medicine business worldwide, the removal of iodine-131 from specific contaminated environments to protect public health has important application prospects. In this study, the surface decontamination mechanism of Ce(IV)/HNO3 as a decontaminant for iodine-131-contaminated nonmetallic materials was investigated by using an orthogonal experimental method and scanning electron microscopy (SEM). During the preparation experiments with the contaminated materials, both quartz glass and ceramics reached peak activity concentration levels at 4 h of adsorption (contamination) by using immersion; the decontamination factor (DF) was selected as the test index for the decontamination experiments.
View Article and Find Full Text PDFEnviron Res
September 2025
Jiangxi Provincial Key Laboratory of High-Performance Steel and Iron Alloy Materials,Jiangxi University of Science and Technology, Ganzhou 34100, China; School of Metallurgy Engineering, Jiangxi University of Science and Technology, Ganzhou 34100, China. Electronic address:
The thermal runaway of lithium-ion batteries (LIBs) releases a mixture of toxic and explosive gases, posing severe safety risks. High-performance sensors are critical for the early detection of these thermal runaway gases (TRGs) to prevent accident escalation. Herein, we systematically investigate Fe-X (X=C, P, S) atomic pair-modified g-CN (FCN, FPN, FSN) monolayers as potential sensing materials for six TRGs (CO, CO, H, CH, CH, and CH) using first-principles calculations.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2025
Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang 110142, China.
A new variety of nitrogen-doped carbon dots (NCDs) was produced using a hydrothermal synthesis method, based on propanedioic acid and barbituric acid as the sources of carbon and nitrogen. The NCDs were analyzed by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Zeta Potential,X-ray Diffraction(XRD),Thermogravimetry-Derivative Thermogravimetry(TG-DTG),Fourier transform infrared spectroscopy (FTIR) and Fluorescence Lifetime. The characterization results indicate that NCDs possess an average diameter of approximately 2.
View Article and Find Full Text PDF