Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Blood filtration using micro-fabricated devices is an interdisciplinary topic of research and innovation driven by clinical applications in cytapheresis, cardiovascular disease monitoring, or liquid biopsy. In this paper, we demonstrate that a micro-perforated membrane can be equipped with sensing microelectrodes for detecting, in situ and in real-time, the capture of cellular material during ex vivo filtration of whole blood under high flow rates. This work describes the fabrication process of the sift and detection microdevice. We demonstrate that reliable electrical signals can be measured in whole blood samples flowing inside a fluidic system at typical flow rates, as large as 11.5 mL/min, hence allowing for large-volume sample processing. The in situ monitoring of the electrical impedance of the microelectrodes is shown to characterize the accumulation of living circulating cells retained by the filtrating membrane, opening interesting applications for monitoring blood filtration processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10741909PMC
http://dx.doi.org/10.3390/bios13120996DOI Listing

Publication Analysis

Top Keywords

blood samples
8
blood filtration
8
flow rates
8
blood
5
bio-impedance spectroscopy
4
spectroscopy retained
4
retained cells
4
cells micro-perforated
4
micro-perforated sensing
4
sensing membrane
4

Similar Publications

Airway obstruction and gender affect arterial stiffness in children with cystic fibrosis.

Turk J Pediatr

September 2025

Department of Cardiorespiratory Physiotherapy and Rehabilitation, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Türkiye.

Background: Vascular changes are observed in children with cystic fibrosis (cwCF), and gender-specific differences may impact arterial stiffness. We aimed to compare arterial stiffness and clinical parameters based on gender in cwCF and to determine the factors affecting arterial stiffness in cwCF.

Methods: Fifty-eight cwCF were included.

View Article and Find Full Text PDF

Background: The expression and clinical correlation of BRAFV600E mutation and programmed cell death-1 ligand 1 (PD-L1) in children with Langerhans cell histiocytosis (LCH) have been reported, but the conclusions of previous studies are inconsistent. In addition, it has been reported that elevated cathepsin S (CTSS) expression is associated with various cancers. However, there is currently no research on the correlation between CTSS and LCH.

View Article and Find Full Text PDF

Background: Sarcomas are rare cancer with a heterogeneous group of tumors. They affect both genders across all age groups and present significant heterogeneity, with more than 70 histological subtypes. Despite tailored treatments, the high metastatic potential of sarcomas remains a major factor in poor patient survival, as metastasis is often the leading cause of death.

View Article and Find Full Text PDF

Programmable Dual-Phase Electrochemical Biosensor Combines Homogeneous CRISPR/Cas12a Activation with Interfacial Poly-G Signaling for miRNA-21 Detection.

Anal Chem

September 2025

Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.

Despite the promise of electrochemical biosensors in amplified nucleic acid diagnostics, existing high-sensitivity platforms often rely on a multilayer surface assembly and cascade amplification confined to the electrode interface. These stepwise strategies suffer from inefficient enzyme activity, poor mass transport, and inconsistent probe orientation, which compromise the amplification efficiency, reproducibility, and practical applicability. To address these limitations, we report a programmable dual-phase electrochemical biosensing system that decouples amplification from signal transduction.

View Article and Find Full Text PDF

Premature infants are at high risk for brain injuries such as intraventricular hemorrhage and periventricular white matter injury. This study applies omics technology to analyze urinary protein expression, aiming to clarify preterm brain injury mechanisms and identify therapeutic targets. Urine samples were collected from 29 very preterm infants (VPI) without brain injury and 11 with moderate/severe injury at eight time points: Days 1, 2, 3, 4, 6, 8, 28, and term-equivalent age (TEA).

View Article and Find Full Text PDF