98%
921
2 minutes
20
The genetic architecture of human diseases and complex traits has been extensively studied, but little is known about the relationship of causal disease effect sizes between proximal SNPs, which have largely been assumed to be independent. We introduce a new method, LD SNP-pair effect correlation regression (LDSPEC), to estimate the correlation of causal disease effect sizes of derived alleles between proximal SNPs, depending on their allele frequencies, LD, and functional annotations; LDSPEC produced robust estimates in simulations across various genetic architectures. We applied LDSPEC to 70 diseases and complex traits from the UK Biobank (average =306K), meta-analyzing results across diseases/traits. We detected significantly nonzero effect correlations for proximal SNP pairs (e.g., -0.37±0.09 for low-frequency positive-LD 0-100bp SNP pairs) that decayed with distance (e.g., -0.07±0.01 for low-frequency positive-LD 1-10kb), varied with allele frequency (e.g., -0.15±0.04 for common positive-LD 0-100bp), and varied with LD between SNPs (e.g., +0.12±0.05 for common negative-LD 0-100bp) (because we consider derived alleles, positive-LD and negative-LD SNP pairs may yield very different results). We further determined that SNP pairs with shared functions had stronger effect correlations that spanned longer genomic distances, e.g., -0.37±0.08 for low-frequency positive-LD same-gene promoter SNP pairs (average genomic distance of 47kb (due to alternative splicing)) and -0.32±0.04 for low-frequency positive-LD H3K27ac 0-1kb SNP pairs. Consequently, SNP-heritability estimates were substantially smaller than estimates of the sum of causal effect size variances across all SNPs (ratio of 0.87±0.02 across diseases/traits), particularly for certain functional annotations (e.g., 0.78±0.01 for common Super enhancer SNPs)-even though these quantities are widely assumed to be equal. We recapitulated our findings via forward simulations with an evolutionary model involving stabilizing selection, implicating the action of linkage masking, whereby haplotypes containing linked SNPs with opposite effects on disease have reduced effects on fitness and escape negative selection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723494 | PMC |
http://dx.doi.org/10.1101/2023.12.04.23299391 | DOI Listing |
Int J Environ Health Res
September 2025
Department of Epidemiology, School of Public Health, Shanxi Medical University, Jinzhong, China.
The mechanism underlying the effects of Polycyclic aromatic hydrocarbons (PAHs) on missed abortion (MA) remains unclear. This study explored the relationship between PAHs exposure, telomere length (TL), metabolizing enzyme gene polymorphism, and MA in a case-control study with 253 pregnant women. A competitive enzyme-linked immunosorbent assay (ELISA) was used to quantify PAH-DNA adducts.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
is a human fungal pathogen capable of both -α and α-α mating and sexual reproduction in laboratory settings. However, the extent of -α and α-α sexual reproductions in natural populations remain unexplored. Here we analyzed the whole-genome sequences of 24 environmental strains of from western Saudi Arabia, including one and 23 α isolates, with 15 α isolates belonging to multi-locus sequence type ST160 as defined by their combined DNA sequences at seven loci.
View Article and Find Full Text PDFFront Genet
August 2025
Department of Geriatrics, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, China.
Background: Physical and cognitive decline are common in older individuals, and traits related to grip strength and cognitive function are used to assess the common genetic structure between the two and to identify common risk loci and genes as well as the genetic mechanisms involved.
Methods: On the basis of large-scale genome-wide association study (GWAS) summary-level datasets, we observed genetic overlaps between grip strength and cognitive function, and cross-trait pleiotropic analysis was performed to detect shared pleiotropic loci and genes. A series of functional annotations and tissue-specific analyses were performed to determine the influence of pleiotropic genes.
Animals (Basel)
July 2025
Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent István Campus, 2100 Gödöllő, Hungary.
The primary objective of any conservation breeding program is to preserve the genetic diversity of populations. This objective is a persistent challenge, especially in small populations which are prone to loss of heterozygosity. In this study, we proposed a novel parent-selection strategy aimed at the long-term maintenance of high levels of genetic diversity.
View Article and Find Full Text PDFbioRxiv
July 2025
Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA.
Phenotypic correlations between complex human traits have long been observed based on epidemiological studies. However, the genetic basis and underlying mechanisms are largely unknown. Here we developed a gene-based approach to measure genetic overlap between a pair of traits and to delineate the shared genes/pathways, through three steps: 1) translating SNP-phenotype association profile to gene-phenotype association profile by integrating GWAS with eQTL data using a newly developed algorithm called Sherlock-II; 2) measuring the genetic overlap between a pair of traits by a normalized distance and the associated p value between the two gene-phenotype association profiles; 3) delineating genes/pathways involved.
View Article and Find Full Text PDF