Complex diseases often have distinct mechanisms spanning multiple tissues. We propose tissue-gene fine-mapping (TGFM), which infers the posterior inclusion probability (PIP) for each gene-tissue pair to mediate a disease locus by analyzing summary statistics and expression quantitative trait loci (eQTL) data; TGFM also assigns PIPs to non-mediated variants. TGFM accounts for co-regulation across genes and tissues and models uncertainty in cis-predicted expression models, enabling correct calibration.
View Article and Find Full Text PDFDifferential allele-specific expression (ASE) is a powerful tool to study context-specific cis-regulation of gene expression. Such effects can reflect the interaction between genetic or epigenetic factors and a measured context or condition. Single-cell RNA sequencing (scRNA-seq) allows the measurement of ASE at individual-cell resolution, but there is a lack of statistical methods to analyze such data.
View Article and Find Full Text PDFPractically all studies of gene expression in humans to date have been performed in a relatively small number of adult tissues. Gene regulation is highly dynamic and context-dependent. In order to better understand the connection between gene regulation and complex phenotypes, including disease, we need to be able to study gene expression in more cell types, tissues, and states that are relevant to human phenotypes.
View Article and Find Full Text PDFUncovering the functional impact of genetic variation on gene expression is important in understanding tissue biology and the pathogenesis of complex traits. Despite large efforts to map expression quantitative trait loci (eQTLs) across many human tissues, our ability to translate those findings to understanding human disease has been incomplete, and the majority of disease loci are not explained by association with expression of a target gene. Cell-type specificity and the presence of multiple independent causal variants for many eQTLs are potential confounders contributing to the apparent discrepancy with disease loci.
View Article and Find Full Text PDFDynamic and temporally specific gene regulatory changes may underlie unexplained genetic associations with complex disease. During a dynamic process such as cellular differentiation, the overall cell type composition of a tissue (or an in vitro culture) and the gene regulatory profile of each cell can both experience significant changes over time. To identify these dynamic effects in high resolution, we collected single-cell RNA-sequencing data over a differentiation time course from induced pluripotent stem cells to cardiomyocytes, sampled at 7 unique time points in 19 human cell lines.
View Article and Find Full Text PDFRare genetic variants are abundant across the human genome, and identifying their function and phenotypic impact is a major challenge. Measuring aberrant gene expression has aided in identifying functional, large-effect rare variants (RVs). Here, we expanded detection of genetically driven transcriptome abnormalities by analyzing gene expression, allele-specific expression, and alternative splicing from multitissue RNA-sequencing data, and demonstrate that each signal informs unique classes of RVs.
View Article and Find Full Text PDFIt is estimated that 350 million individuals worldwide suffer from rare diseases, which are predominantly caused by mutation in a single gene. The current molecular diagnostic rate is estimated at 50%, with whole-exome sequencing (WES) among the most successful approaches. For patients in whom WES is uninformative, RNA sequencing (RNA-seq) has shown diagnostic utility in specific tissues and diseases.
View Article and Find Full Text PDFRare genetic variants are abundant in humans and are expected to contribute to individual disease risk. While genetic association studies have successfully identified common genetic variants associated with susceptibility, these studies are not practical for identifying rare variants. Efforts to distinguish pathogenic variants from benign rare variants have leveraged the genetic code to identify deleterious protein-coding alleles, but no analogous code exists for non-coding variants.
View Article and Find Full Text PDFMost variants implicated in common human disease by genome-wide association studies (GWAS) lie in noncoding sequence intervals. Despite the suggestion that regulatory element disruption represents a common theme, identifying causal risk variants within implicated genomic regions remains a major challenge. Here we present a new sequence-based computational method to predict the effect of regulatory variation, using a classifier (gkm-SVM) that encodes cell type-specific regulatory sequence vocabularies.
View Article and Find Full Text PDF