Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this article, we have reported the effect of varying concentration of europium (Eu) in (50 - x)% P O -25% Na O-24% CaO-% Eu O , where x = 1, 3, 5. The glass samples were synthesised via conventional melt-quench method. The impact of europium ion (Eu ) on the structural, optical and luminescent properties of phosphate soda lime glasses has been studied using X-ray diffraction (XRD), Fourier-transformed infrared (FTIR) spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscopy coupled with energy-dispersive spectroscopy and photoluminescent techniques. The amorphous nature of glass samples was confirmed by XRD patterns. FTIR confirmed the presence of various functional groups. The emission spectra of synthesised samples exhibited intense emission peaks corresponding to Eu under excitation at 393 nm. Among all the peaks, the maximum intensity was observed for D  →  F transition. Judd-Ofelt (J-O) parameters (Ω , Ω ) and other radiative parameters such as band width, radiative transition probabilities, stimulated emission cross-sections and branching ratio were determined from emission spectra. The other photometric parameters such as CIE coordinates and colour purity were also determined. Furthermore, cytotoxic studies were carried out on normal cell line human embryonic kidney cells (HEK-293) using MTT assay. Results showed that the prepared samples significantly enhanced growth in glass sample-treated cells as compared to control cells. These findings suggest that synthesised glass samples are biocompatible in nature and have potential for applications in display devices and biomedical research area.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bio.4652DOI Listing

Publication Analysis

Top Keywords

glass samples
12
soda lime
8
emission spectra
8
samples
5
structural luminescent
4
luminescent vitro
4
vitro studies
4
studies europium-doped
4
europium-doped soda
4
lime phosphate
4

Similar Publications

Clinical characteristics and prognostic factors of Hermansky-Pudlak syndrome with or without pulmonary fibrosis: a systematic review.

Ther Adv Respir Dis

September 2025

Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.

Background: Hermansky-Pudlak syndrome (HPS) is a rare disease characterized by excessive bleeding, oculocutaneous albinism, and pulmonary fibrosis (PF). However, few studies have systematically summarized the clinical characteristics of HPS.

Objectives: To summarize the clinical characteristics, risk factors of PF, radiological and pathological presentations, and prognostic factors in patients with HPS.

View Article and Find Full Text PDF

Optimization of the measurement method for airborne endotoxins in workplace atmospheres: experiments using laboratory-generated bioaerosols.

Ann Work Expo Health

September 2025

Laboratoire de Métrologie des Aérosols, INRS, 54519 Vandœuvre-lès-Nancy Cedex, France.

Endotoxins are components of the outer membrane of bacteria that can become airborne during aerosol-generating work activities and cause adverse effects on workers' health. Filtration is the sampling method recommended by the EN 14031 standard for endotoxin measurements in workplace atmospheres. However, there are still differences in terms of practice regarding certain parameters of the measurement method.

View Article and Find Full Text PDF

The integration of information memory and computing enabled by nonvolatile memristive device has been widely acknowledged as a critical solution to circumvent the von Neumann architecture limitations. Herein, the Au/NiO/CaBiTiO/FTO (CBTi/NiO) heterojunction based memristor with varying film thicknesses are demonstrated on FTO/glass substrates, and the CBTi/NiO-4 sample shows the optimal memristor characteristics with 5 × 10 stable switching cycles and 10-s resistance state retention. The electrical conduction in the low-resistance state is dominated by Ohmic behavior, while the high-resistance state exhibited characteristics consistent with the space-charge-limited conduction (SCLC) model.

View Article and Find Full Text PDF

HT SpaceM: A high-throughput and reproducible method for small-molecule single-cell metabolomics.

Cell

September 2025

Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Baden-Württemberg 69117, Germany; Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Metabolomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Baden-Württe

Single-cell metabolomics (SCM) promises to reveal metabolism in its complexity and heterogeneity, yet current methods struggle with detecting small-molecule metabolites, throughput, and reproducibility. Addressing these gaps, we developed HT SpaceM, a high-throughput SCM method combining cell preparation on custom glass slides, small-molecule matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (MS), and batch processing. We propose a unified framework covering quality control, characterization, structural validation, and differential and functional analyses.

View Article and Find Full Text PDF

Atomic armor for thermal stability in nanoporous structures.

Proc Natl Acad Sci U S A

September 2025

School of Chemistry and Physics, Australian Research Council Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia.

Nanoporous structures play a critical role in a wide range of applications, including catalysis, thermoelectrics, energy storage, gas adsorption, and thermal insulation. However, their thermal instability remains a persistent challenge. Inspired by the extraordinary resilience of tardigrades, an "atomic armor" strategy is introduced to enhance the stability of nanoporous structures.

View Article and Find Full Text PDF