98%
921
2 minutes
20
In today's era, nanoparticles (NPs) have become an integral part of human life, finding extensive applications in various fields of science, pharmacy, medicine, industry, electronics, and communication. The increasing popularity of NP usage worldwide is a testament to their tremendous potential. However, the widespread deployment of NPs unavoidably leads to their release into the environmental matrices, resulting in persistence in ecosystems and bioaccumulation in organisms. Understanding the environmental behavior of NPs poses a significant challenge due to their nanoscale size. Given the current environmental releases of NPs, known negative consequences, and the limited knowledge available for risk management, comprehending the toxicity of NPs in ecosystems is both awaiting and crucial. The present review aims to unravel the potential environmental influences of nano-scaled materials, and provides in-depth inferences of the current knowledge and understanding in this field. The review comprehensively summarizes the sources, fate, transport, toxicity, health risks, and remediation solutions associated with NP pollution in aquatic and soil ecosystems. Furthermore, it addresses the knowledge gaps and outlines further investigation priorities for the sustainable control of NP pollution in these environments. By gaining a holistic understanding of these aspects, we can work toward ensuring the responsible and sustainable use of NPs in today's fast-growing world.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.169331 | DOI Listing |
Commun Biol
September 2025
Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Neuronal development and function are orchestrated by a plethora of regulatory mechanisms that control the abundance, localization, interactions, and function of proteins. A key role in this regard is assumed by post-translational protein modifications (PTMs). While some PTM types, such as phosphorylation or ubiquitination, have been explored comprehensively, PTMs involving ubiquitin-like modifiers (Ubls) have remained comparably enigmatic (Ubls).
View Article and Find Full Text PDFPhysiol Plant
September 2025
Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
Auxins are involved in the regulation of fruit set and development; however, the role of IAA is unclear in pea (Pisum sativum) since the endogenous auxin 4-Cl-IAA appears to be the auxin stimulating ovary (pericarp) growth. To further understand the role of auxins during fruit development, auxin localization, quantitation, transport, and gene expression activity were assessed in this model legume species. IAA levels and auxin activity (DR5::β-Glucuronidase [GUS] staining and enzyme activity) were substantially reduced in the pericarp vascular tissues, pedicels, and peduncles of fruit upon seed removal, reflecting auxin transport streams derived from the seeds through these tissues.
View Article and Find Full Text PDFSci Total Environ
September 2025
University Hohenheim, Department of Process Analytics and Cereal Science, Stuttgart, 70599, Germany.
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants with increasing prevalence in agricultural soils, primarily introduced through biosolid application, wastewater irrigation, and atmospheric deposition. This review provides a meta-analysis of terminologies across 145 peer-reviewed studies, identifying inconsistency in the classification of PFAS subgroups-such as "long-chain vs. short-chain," "precursors," and "emerging PFAS"-which hinders regulatory harmonization and model calibration.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany.
Chromatin dynamics play a crucial role in cellular differentiation, yet tools for studying global chromatin mobility in living cells remain limited. Here, a novel probe is developeded for the metabolic labeling of chromatin and tracking its mobility during neural differentiation. The labeling system utilizes a newly developed silicon rhodamine-conjugated deoxycytidine triphosphate (dCTP).
View Article and Find Full Text PDFAdv Mater
September 2025
State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
Delivering therapeutics across the blood-brain barrier (BBB) remains a major challenge in ischemic stroke therapy. Ischemic stroke induces upregulation of various inflammatory membrane receptors on brain endothelial cells, offering potential entry points for receptor-mediated transcytosis. This study proposes a universal targeting strategy by employing inflammatory pathway antagonists as targeting ligands, which broadens the spectrum of available ligands beyond traditional receptor-binding molecules.
View Article and Find Full Text PDF