Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A wide variety of CreER driver lines are available for genetic manipulation of adult-born neurons in the mouse brain. These tools have been instrumental in studying fate potential, migration, circuit integration, and morphology of the stem cells supporting lifelong neurogenesis. Despite a wealth of tools, genetic manipulation of adult-born neurons for circuit and behavioral studies has been limited by poor specificity of many driver lines targeting early progenitor cells and by the inaccessibility of lines selective for later stages of neuronal maturation. We sought to address these limitations by creating a new CreER driver line targeted to the endogenous mouse doublecortin locus as a marker of fate-specified neuroblasts and immature neurons. Our new model places a T2A-CreER cassette immediately downstream of the Dcx coding sequence on the X chromosome, allowing expression of both Dcx and CreER proteins in the endogenous spatiotemporal pattern for this gene. We demonstrate that the new mouse line drives expression of a Cre-dependent reporter throughout the brain in neonatal mice and in known neurogenic niches of adult animals. The line has been deposited with the Jackson Laboratory and should provide an accessible tool for studies targeting fate-restricted neuronal precursors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11021165PMC
http://dx.doi.org/10.1002/dvg.23584DOI Listing

Publication Analysis

Top Keywords

genetic manipulation
12
creer driver
8
driver lines
8
manipulation adult-born
8
adult-born neurons
8
generation dcx-creer
4
dcx-creer knock-in
4
mouse
4
knock-in mouse
4
mouse genetic
4

Similar Publications

Understanding the molecular basis of regulated nitrogen (N) fixation is essential for engineering N-fixing bacteria that fulfill the demand of crop plants for fixed nitrogen, reducing our reliance on synthetic nitrogen fertilizers. In Azotobacter vinelandii and many other members of Proteobacteria, the two-component system comprising the anti-activator protein (NifL) and the Nif-specific transcriptional activator (NifA)controls the expression of nif genes, encoding the nitrogen fixation machinery. The NifL-NifA system evolved the ability to integrate several environmental cues, such as oxygen, nitrogen, and carbon availability.

View Article and Find Full Text PDF

Genetic manipulation of OGT enhances NK cell-mediated cytotoxicity in tumor immunity.

J Adv Res

September 2025

Center for Gene and Cell Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; KRIBB School of Advanced Bioconvergence, University of Science and Technology (UST), Daejeon 34113, Republic of Korea. Electronic address:

Introduction: Natural killer (NK) cells are essential effectors in immune surveillance and cancer immunotherapy, but their function is often compromised by metabolic stress and environmental factors within the tumor microenvironment (TME). O-GlcNAcylation, a post-translational modification, regulates immune responses, yet its impact on NK cell function and therapeutic potential in immune cell-based therapies remains underexplored.

Objectives: This study investigates the effects of O-GlcNAcylation on NK cell-mediated cytotoxicity and its potential as a therapeutic target to enhance tumor immunity.

View Article and Find Full Text PDF

We report the forensic and clinicopathological spectrum of 14 postmortem cases involving the vertebral artery. In all cases, there was either pontocerebellar infarction (n = 8) or subarachnoid hemorrhage (n = 6). The underlying pathology of the vertebral artery was segmental mediolytic arteriopathy (n = 5), traumatic rupture of the arterial wall (n = 3), arterial dissection (n = 2), or atherosclerosis (n = 4).

View Article and Find Full Text PDF

Oogenesis - the formation and development of an oocyte - is fundamental to reproduction and embryonic development. Due to its accessibility to genetic manipulations and the ability to culture and experimentally manipulate oocytes ex vivo, zebrafish has emerged as a powerful vertebrate model system for studying oogenesis. In this review, we provide a comprehensive overview of zebrafish oogenesis, from early germ cell formation to oocyte maturation and fertilization.

View Article and Find Full Text PDF

Objective: Converging evidence from neuroimaging studies and genome-wide association study (GWAS) suggests the involvement of prefrontal cortex (PFC) and striatum dysfunction in the pathophysiology of anorexia nervosa (AN). However, identifying the causal role of circuit-specific genes in the development of the AN-like phenotype remains challenging and requires the combination of novel molecular tools and preclinical models.

Methods: We used the activity-based anorexia (ABA) rat model in combination with a novel viral-based translating ribosome affinity purification (TRAP) technique to identify transcriptional differences within a specific neural pathway that we have previously demonstrated to mediate pathological weight loss in ABA rats (i.

View Article and Find Full Text PDF