98%
921
2 minutes
20
Mutant populations are crucial for functional genomics and discovering novel traits for crop breeding. Sorghum, a drought and heat-tolerant C4 species, requires a vast, large-scale, annotated, and sequenced mutant resource to enhance crop improvement through functional genomics research. Here, we report a sorghum large-scale sequenced mutant population with 9.5 million ethyl methane sulfonate (EMS)-induced mutations that covered 98% of sorghum's annotated genes using inbred line BTx623. Remarkably, a total of 610 320 mutations within the promoter and enhancer regions of 18 000 and 11 790 genes, respectively, can be leveraged for novel research of cis-regulatory elements. A comparison of the distribution of mutations in the large-scale mutant library and sorghum association panel (SAP) provides insights into the influence of selection. EMS-induced mutations appeared to be random across different regions of the genome without significant enrichment in different sections of a gene, including the 5' UTR, gene body, and 3'-UTR. In contrast, there were low variation density in the coding and UTR regions in the SAP. Based on the K /K value, the mutant library (~1) experienced little selection, unlike the SAP (0.40), which has been strongly selected through breeding. All mutation data are publicly searchable through SorbMutDB (https://www.depts.ttu.edu/igcast/sorbmutdb.php) and SorghumBase (https://sorghumbase.org/). This current large-scale sequence-indexed sorghum mutant population is a crucial resource that enriched the sorghum gene pool with novel diversity and a highly valuable tool for the Poaceae family, that will advance plant biology research and crop breeding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.16582 | DOI Listing |
Sci Adv
September 2025
Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
Somatic mitochondrial DNA (mtDNA) mutations are frequently observed in tumors, yet their role in pediatric cancers remains poorly understood. The heteroplasmic nature of mtDNA-where mutant and wild-type mtDNA coexist-complicates efforts to define its contribution to disease progression. In this study, bulk whole-genome sequencing of 637 matched tumor-normal samples from the Pediatric Cancer Genome Project revealed an enrichment of functionally impactful mtDNA variants in specific pediatric leukemia subtypes.
View Article and Find Full Text PDFiScience
September 2025
School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
Deep learning has rapidly emerged as a promising toolkit for protein optimization, yet its success remains limited, particularly in the realm of activity. Moreover, most algorithms lack rigorous iterative evaluation, a crucial aspect of protein engineering exemplified by classical directed evolution. This study introduces DeepDE, a robust iterative deep learning-guided algorithm leveraging triple mutants as building blocks and a compact library of ∼1,000 mutants for training.
View Article and Find Full Text PDFFront Microbiol
August 2025
College of Life Sciences, Hebei University, Baoding, China.
Introduction: The Zika virus (ZIKV) envelope (E) protein is critical for viral replication and host interactions. Although glycosylation of the E protein is known to influence viral infectivity and immune evasion, the specific functional roles of E protein glycosylation in ZIKV infectivity in mosquito cells remain unclear.
Methods: In this study, we generated a deglycosylation mutant ZIKV with a T156I substitution in the E protein and investigated its effects on viral replication and viral-host interactions in mosquito C6/36 cells.
JTO Clin Res Rep
October 2025
Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.
Introduction: Immune checkpoint blockade (ICB) is a standard first-line treatment for stage IV NSCLC without actionable oncogenic alterations. mutations, prevalent in 30% to 40% lung adenocarcinomas (LUAD) in Western populations, currently lack targeted first-line therapies. This study aimed to assess the predictive value of mutations for clinical outcomes after distinct ICB regimens, validating our previous findings in a larger cohort with extended follow-up.
View Article and Find Full Text PDFBrain Commun
August 2025
Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
was identified in human and mouse Huntington's disease brain as the pathogenic exon 1 mRNA generated from aberrant splicing between exon 1 and 2 of that contributes to aggregate formation and neuronal dysfunction. Detection of the huntingtin exon 1 protein (HTT1a) has been accomplished with Meso Scale Discovery, Homogeneous Time Resolved Fluorescence and immunoprecipitation assays in Huntington's disease knock-in mice, but direct detection in homogenates by gel electrophoresis and western blot assay has been lacking. Subcellular fractions prepared from mouse and human Huntington's disease brain were separated by gel electrophoresis and probed by western blot with neoepitope monoclonal antibodies 1B12 and 11G2 directed to the C-terminal eight residues of HTT1a.
View Article and Find Full Text PDF