Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Grapevine berries undergo asynchronous growth and ripening dynamics within the same bunch. Due to the lack of efficient methods to perform sequential non-destructive measurements on a representative number of individual berries, the genetic and environmental origins of this heterogeneity, remain nearly unknown. To address these limitations, we propose a method to track the growth and coloration kinetics of individual berries on time-lapse images of grapevine bunches.

Results: First, a deep-learning approach is used to detect berries with at least 50 ± 10% of visible contours, and infer the shape they would have in the absence of occlusions. Second, a tracking algorithm was developed to assign a common label to shapes representing the same berry along the time-series. Training and validation of the methods were performed on challenging image datasets acquired in a robotised high-throughput phenotyping platform. Berries were detected on various genotypes with a F1-score of 91.8%, and segmented with a mean absolute error of 4.1% on their area. Tracking allowed to label and retrieve the temporal identity of more than half of the segmented berries, with an accuracy of 98.1%. This method was used to extract individual growth and colour kinetics of various berries from the same bunch, allowing us to propose the first statistically relevant analysis of berry ripening kinetics, with a time resolution lower than one day.

Conclusions: We successfully developed a fully-automated open-source method to detect, segment and track overlapping berries in time-series of grapevine bunch images acquired in laboratory conditions. This makes it possible to quantify fine aspects of individual berry development, and to characterise the asynchrony within the bunch. The interest of such analysis was illustrated here for one cultivar, but the method has the potential to be applied in a high throughput phenotyping context. This opens the way for revisiting the genetic and environmental variations of the ripening dynamics. Such variations could be considered both from the point of view of fruit development and the phenological structure of the population, which would constitute a paradigm shift.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10720176PMC
http://dx.doi.org/10.1186/s13007-023-01125-8DOI Listing

Publication Analysis

Top Keywords

ripening dynamics
12
berries
9
method track
8
berries time-lapse
8
time-lapse images
8
individual berries
8
genetic environmental
8
method
5
ripening
4
dynamics revisited
4

Similar Publications

Fermentation and post-ripening plays a significant role in shaping the nutritional value, taste, and aroma of natto. This study aimed to analyse nutritional trends in natto during fermentation and ripening, identify its characteristic volatile organic compounds (VOCs), and elucidate their formation pathways. VOCs were detected using HS-GC-IMS combined with sensory evaluation in the study.

View Article and Find Full Text PDF

Background: The Aux/IAA protein is integral to the modulation of auxin signaling, which is essential for plant growth and development. However, systematic analysis on the Aux/IAA gene family in pineapple ( L.) remains unexplored.

View Article and Find Full Text PDF

Co-treatment of ethylene and methyl jasmonate synergistically enhances postharvest marketability and quality of lemons by regulating phenolic metabolism and antioxidant capacity.

Food Chem

August 2025

College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing &

Lemon (Citrus limon), an important citrus fruit, suffers from slow postharvest ripening and rapid quality deterioration, including moisture loss and membrane lipid peroxidation. This study investigated the effects of ethylene (ETH) and methyl jasmonate (MeJA) co-treatment on ripening and quality maintenance of green-mature lemons. ETH + MeJA accelerated peel degreening, improved marketability, and simultaneously suppressed the ETH-induced high respiration rate and weight loss, preserving soluble solids, titratable acidity, and ascorbic acid.

View Article and Find Full Text PDF

Biophysical boundaries for dormancy release in sunflower achenes.

J Exp Bot

September 2025

Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires (UBA), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina.

Reactions leading to dormancy release (DR) in "dry", orthodox seeds are still poorly understood, as well as their dependence on moisture content and temperature. Sunflower achenes were used to explore the effects of MC combined with a wide range of storage temperatures (ST°) on DR dynamics, tested at 10 and 25°C. Embryo sensitivity to abscisic acid, oxygen uptake and ageing indicators were followed and complemented with predicted viability loss dynamics.

View Article and Find Full Text PDF

Structural dynamics of the plant hormone receptor ETR1 in a native-like membrane environment.

FEBS Lett

September 2025

Institute of Biochemical Plant Physiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany.

Ethylene (CH) regulates plant processes, such as germination, fruit ripening, and stress responses, impacting nutrition and food quality. The membrane-bound receptor ETR1 from Arabidopsis thaliana is a model for ethylene signaling, but both full-length and the soluble cytoplasmic domain have resisted crystallization. We present high-resolution NMR spectra of full-length ETR1 reconstituted in lipid nanodiscs, overcoming limitations and enhancing sample uniformity.

View Article and Find Full Text PDF