98%
921
2 minutes
20
In light-harvesting complex II of plants, the two lutein pigments (LUT1 and LUT2) are always paired and an energy transfer pathway between them is believed to exist. However, it remains unclear whether this pathway is essential for the energy transfer between carotenoids and chlorophylls. In this work, we performed hybrid quantum mechanics/molecular mechanics simulations with Frenkel exciton models to investigate this energy transfer. The results show that the energy transfer pathways between the S state of LUT1 and CLAs are not affected by LUT2 S. The energy transfer between LUT and chlorophyll-a (CLA) also follows a resonance mechanism. The two LUTs have different energy transfer pathways according to their energy gaps and coupling strengths with each CLA. The present work sheds light on the energy transfer pathways involved in the two LUTs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp05278h | DOI Listing |
Phys Chem Chem Phys
September 2025
Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan.
Hybrid systems (HSs) of quantum dots (QDs) and molecular photoswitches exhibit luminescence switching of QDs based on energy transfer and have garnered attention for their potential applications in sensors and optical memories. In HSs, the chemical composition, such as the number of attached ligands, is inherently distributed, posing challenges for extracting the energy transfer process from the QDs to a single acceptor molecule. The stochastic model, assuming a Poisson distribution for the number of acceptors, proves to be an effective approach for extracting the process.
View Article and Find Full Text PDFNanoscale
September 2025
Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, India.
The transition to a net-zero carbon economy hinges on the development of sustainable, efficient, and economically viable energy technologies. Here, we present a green, electricity-free auto-combustion synthesis of a multifunctional FeNi@MnO@C electrocatalyst, demonstrating outstanding performance for OER, HER, OWS, UOR, UOS, and OWS in alkaline seawater with a required potential of 1.45, 0.
View Article and Find Full Text PDFCNS Neurosci Ther
September 2025
College of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China.
Background: Neurological diseases such as stroke or Parkinson's disease are often accompanied by weakening or loss of proprioception, which seriously affects the motor control ability of the patients. However, proprioception rehabilitation is challenging due to the pain caused by impaired joints and the hard efforts that patients have to make during training. This study investigated the cross-transfer effect of short-term visuomotor training to the untrained wrist from the trained wrist, from both views of behavioral results and brain activity analyses.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China.
The donor/acceptor (D/A) interfaces in bulk heterojunction (BHJ) organic solar cells (OSCs) critically govern exciton dissociation and molecular diffusion, determining both efficiency and stability. Herein, we design a double-cable conjugated polymer, SC-1F, to insert into a physically-blended D/A system to optimize the interface. We have found that SC-1F spontaneously segregates to the interface through favorable miscibility and heterogeneous nucleation with the acceptor.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
Enhancing the energy conversion efficiency of fuel cells necessitates optimization of oxygen reduction reaction (ORR) under high-voltage conditions through improved Pt catalysis. This study introduces an electrocatalyst that uniformly anchors a high loading (40 wt%) of small Pt nanoparticles (3.2 nm) on a novel support: tellurium and nitrogen co-mediated graphitized mesoporous carbon (Te-N-GMC).
View Article and Find Full Text PDF