A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

SMYD3 activates the TCA cycle to promote M1-M2 conversion in macrophages. | LitMetric

SMYD3 activates the TCA cycle to promote M1-M2 conversion in macrophages.

Int Immunopharmacol

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China. Electronic address:

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: SMYD3 refers to a histone lysine methyltransferase from the SMYD family, which acts as a gene transcriptional regulator chiefly through catalysis of the histone subunit 3 at lysine 4 trimethylation (H3K4me3). Great progress has been made that epigenetic modification plays a pivotal role in regulating macrophage polarization. However, the effects of the histone lysine methyltransferase SMYD3 on macrophage polarization and phenotypic switching are unclear.

Results: We found that LPS/IFN-γ-stimulated macrophages gradually transformed from M1 to M2 in the late stage, and SMYD3 played a key role in this process. As demonstrated by RNA-seq assessment, SMYD3 prominently activated a metabolic pathway known as TCA cycle inside macrophages during M1-M2 conversion. Besides, by modifying H3K4me3 histone, the target genes regulated by SMYD3 were identified via the ChIP-seq assessment, including citrate synthase (CS), succinate dehydrogenase complex subunit C (SDHC) and pyruvate carboxylase (PC). SMYD3 activated the transcriptional activities of the metabolic enzymes CS, SDHC and PC through H3K4me3 by causing the aggregation of citrate, an intramacrophage metabolite, and the depletion of succinate. And additionally, it facilitated the generation of ROS, as well as the expressions of genes associated with mitochondrial respiratory chain complexes. This increased ROS production ultimately induced mitophagy, triggering the M1 to M2 phenotype switch in the macrophages.

Conclusions: Our study provides a detailed intrinsic mechanism in the macrophage phenotypic transition process, in short, SMYD3 promotes the M1-M2 conversion of macrophages by activating the TCA cycle through the simultaneous regulation of the transcriptional activities of the metabolic enzymes CS, SDHC and PC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2023.111329DOI Listing

Publication Analysis

Top Keywords

tca cycle
12
m1-m2 conversion
12
smyd3
8
conversion macrophages
8
histone lysine
8
lysine methyltransferase
8
macrophage polarization
8
transcriptional activities
8
activities metabolic
8
metabolic enzymes
8

Similar Publications