Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The skin, the body's largest organ, acts as a protective barrier against pathogens and environmental damage. Skin burns can result from heat, chemicals, friction, or electricity. Nanoscience has recently been utilized to create ointments and creams for burns. Zinc oxide nanoparticles are crucial due to their antimicrobial and antioxidant properties. In this study, a cream containing nanoparticles was loaded with calendula extract, and its ability to promote tissue healing was investigated in Wistar rats with skin burns. The zinc oxide nanoparticles were chemically synthesized and loaded with calendula extract. The morphology and physicochemical properties of the nanoparticles were confirmed by SEM, ZETA size, XRD, and FTIR assays. The MTT technique was employed to assess the cream's impact on fibroblast growth. The antimicrobial activity of the nanoparticles was investigated against using the MIC method. Real-time PCR was used to determine the expression of the Bax and Bcl-2 genes in . The results showed that zinc oxide nanoparticles at high concentrations increased the proliferation of the fibroblast cells. Histopathological studies showed granulation and epithelialization of the tissue without any hemorrhage or tissue infection during the first days of treatment with this cream. The animal models treated with the cream showed an increase in Bcl-2 gene expression and a decrease in Bax expression. We concluded that zinc oxide nanoparticles loaded with calendula extract have a practical effect in healing burn wounds due to their unique antibacterial properties of zinc oxide nanoparticles and their anti-inflammatory and wound-healing effects. The synergistic effect of these two substances significantly improved the healing process. This newly developed cream can be introduced as a successful and viable treatment option in burn wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c17350DOI Listing

Publication Analysis

Top Keywords

zinc oxide
24
oxide nanoparticles
20
loaded calendula
12
calendula extract
12
skin burns
8
burns zinc
8
nanoparticles
8
nanoparticles loaded
8
burn wounds
8
zinc
6

Similar Publications

In pig production, weaning is a critical period where piglets face several environmental stressors. This transition leads to a significant growth reduction and can result in digestive disorders, including diarrhea. To formulate a feed that meets zinc (Zn) and copper (Cu) requirements during the weaning period while minimizing their release into the environment, it became evident that a more bioavailable micro-mineral supplement is necessary.

View Article and Find Full Text PDF

Infected wounds remain a major clinical challenge due to bacterial invasion, which disrupts the natural healing cascade through excessive reactive oxygen species (ROS) generation, severe vascular damage, and persistent inflammation. Inspired by the catechol-rich adhesive domains of mussel foot proteins, we developed an extracellular matrix (ECM)-mimetic polyethylene glycol (PEG) hydrogel incorporating polydopamine (PDA)-functionalized zinc oxide nanoparticles (ZnONPs) for infected wound therapy. The amino acid-functionalized PEG hydrogel reproduces ECM-like properties to facilitate cell migration and efficient exudate management; however, its lack of intrinsic antimicrobial activity limits therapeutic efficacy.

View Article and Find Full Text PDF

The utilization of plant extracts in combination with various nanomaterials for treating polymicrobial wound infections represents a novel approach in overcoming the problem of antimicrobial resistance through its multi-targeted mechanism of action. The present study investigates the potential of plant extract for the green synthesis of AgZnO bimetallic nanoparticles (BMNPs). The nanoparticles obtained were characterized and the UV-Vis studies demonstrated peaks at 361 and 371 nm which were characteristic of silver and zinc oxide nanoparticles while a size range of 5-15 nm was revealed in the HR TEM studies, and the presence of crystalline ZnO and surface decorated Ag nanoparticles was observed in the diffraction patterns.

View Article and Find Full Text PDF

Chronic wounds are a foremost cause of death, affecting 6.5 million people annually. Traditional treatments, such as metal-based formulations and biomaterials, are ineffective due to their toxicity and the rising incidence of chronic wound cases, necessitating the advancement of new therapies for efficient wound healing.

View Article and Find Full Text PDF