Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the realm of modern medicine, medical imaging stands as an irreplaceable pillar for accurate diagnostics. The significance of precise segmentation in medical images cannot be overstated, especially considering the variability introduced by different practitioners. With the escalating volume of medical imaging data, the demand for automated and efficient segmentation methods has become imperative. This study introduces an innovative approach to heart image segmentation, embedding a multi-scale feature and attention mechanism within an inverted pyramid framework. Recognizing the intricacies of extracting contextual information from low-resolution medical images, our method adopts an inverted pyramid architecture. Through training with multi-scale images and integrating prediction outcomes, we enhance the network's contextual understanding. Acknowledging the consistent patterns in the relative positions of organs, we introduce an attention module enriched with positional encoding information. This module empowers the network to capture essential positional cues, thereby elevating segmentation accuracy. Our research resides at the intersection of medical imaging and sensor technology, emphasizing the foundational role of sensors in medical image analysis. The integration of sensor-generated data showcases the symbiotic relationship between sensor technology and advanced machine learning techniques. Evaluation on two heart datasets substantiates the superior performance of our approach. Metrics such as the Dice coefficient, Jaccard coefficient, recall, and F-measure demonstrate the method's efficacy compared to state-of-the-art techniques. In conclusion, our proposed heart image segmentation method addresses the challenges posed by diverse medical images, offering a promising solution for efficiently processing 2D/3D sensor data in contemporary medical imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708808PMC
http://dx.doi.org/10.3390/s23239366DOI Listing

Publication Analysis

Top Keywords

medical imaging
16
heart image
12
image segmentation
12
inverted pyramid
12
medical images
12
segmentation method
8
attention mechanism
8
mechanism inverted
8
medical
8
sensor technology
8

Similar Publications

Purpose: Real‑time magnetic resonance-guided radiation therapy (MRgRT) integrates MRI with a linear accelerator (Linac) for gating and adaptive radiotherapy, which requires robust image‑quality assurance over a large field of view (FOV). Specialized phantoms capable of accommodating this extensive FOV are therefore essential. This study compares the performance of four commercial MRI phantoms on a 0.

View Article and Find Full Text PDF

Introduction: Medical physicists play a critical role in ensuring image quality and patient safety, but their routine evaluations are limited in scope and frequency compared to the breadth of clinical imaging practices. An electronic radiologist feedback system can augment medical physics oversight for quality improvement. This work presents a novel quality feedback system integrated into the Epic electronic medical record (EMR) at a university hospital system, designed to facilitate feedback from radiologists to medical physicists and technologist leaders.

View Article and Find Full Text PDF

Purpose: The development of on-board cone-beam computed tomography (CBCT) has led to improved target localization and evaluation of patient anatomical change throughout the course of radiation therapy. HyperSight, a newly developed on-board CBCT platform by Varian, has been shown to improve image quality and HU fidelity relative to conventional CBCT. The purpose of this study is to benchmark the dose calculation accuracy of Varian's HyperSight cone-beam computed tomography (CBCT) on the Halcyon platform relative to fan-beam CT-based dose calculations and to perform end-to-end testing of HyperSight CBCT-only based treatment planning.

View Article and Find Full Text PDF

Background: The treatment of mandibular angle fractures remains controversial, particularly regarding the method of fixation. The primary aim of this study was to compare surgical outcomes following treatment with 1-plate versus 2-plate fixation across two oral and maxillofacial surgery clinics. The secondary aim was to evaluate associations between patient-, trauma-, and procedure-specific factors with postoperative complications and to identify high-risk patients for secondary osteosynthesis.

View Article and Find Full Text PDF

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF