98%
921
2 minutes
20
In this molecular dynamics (MD) simulation study, the separation of dimethyl sulfoxide (DMSO) from water was investigated using multilayer functionalized graphene oxide (GO) membranes. The GO nanosheets were modified with chemical groups (-F, -H) to alter their properties. The study analyzed the influence of pressure and functional groups on the separation rate. Additionally, a deep neural network (DNN) model was developed to predict membrane behavior under different conditions in water treatment processes. Results revealed that the fluorine-functionalized membrane exhibited higher permeation compared to the hydrogen-functionalized one, with potential of mean force (PMF) analysis indicating higher energy barriers for water molecules passing through the hydrogen-functionalized membrane. The study used density profile, water density map analysis, and radial distribution function (RDF) analysis to understand water and DMSO molecule interactions. The diffusion coefficient of water molecules was also calculated, showing higher diffusion in the fluorine-functionalized system. Overall, the findings suggest that functionalized GO membranes are effective for DMSO-water separation, with the fluorine-functionalized membrane showing superior performance. The DNN model accurately predicts membrane behavior, contributing to the optimization of membrane separation systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.140802 | DOI Listing |
Dan Med J
August 2025
Department of Hepatology and Gastroenterology, Aarhus University Hospital.
Introduction: A no-biopsy approach has been suggested for diagnosing coeliac disease (CD) in adult patients. This approach is already well established in diagnosing children with CD. This study aimed to evaluate the accuracy of IgA anti-tissue transglutaminase (IgA anti-tTG) in predicting duodenal mucosal lesions diagnostic of CD in adult patients.
View Article and Find Full Text PDFMed Int (Lond)
August 2025
Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China.
Punicalagin, a polyphenolic compound extracted from pomegranate peel, has received increasing attention in recent years due to its antibacterial and antiviral properties. Punicalagin is capable of inhibiting bacterial growth at sub-inhibitory concentrations by affecting cell membrane formation, disrupting membrane integrity, altering cell permeability, affecting efflux pumps, interfering with quorum sensing and influencing virulence factors. Additionally, punicalagin inhibits viruses by modulating enzyme activity, interacting with viral surface proteins, affecting gene expression, blocking viral attachment, disrupting virus receptor interaction and inhibiting viral replication.
View Article and Find Full Text PDFiScience
September 2025
State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
Super austenitic stainless steels (SASS) face challenges like galvanic corrosion and antibacterial performance when welded to carbon steel (Q235) in marine environments. This study demonstrates that adding 1.0 wt% cerium (Ce) to SASS refines the heat-affected zone (HAZ) grain structure (from 7 μm to 2 μm), suppresses detrimental σ-phase precipitation, and forms a dense oxide film.
View Article and Find Full Text PDFBiochem Biophys Rep
December 2025
Henan University of Chinese Medicine, Zhengzhou, 450046, China.
Introduction: 5-Hydroxymethyl furfural (5-HMF) is a furan compound with a molecular formula of CHO. Studies have found that 5-HMF has many pharmacological effects, such as improving hemorheology, anti-inflammatory, antioxidant activity and anti-myocardial ischemia. Identifying the preventive effect of 5-HMF against ischemic stroke and its possible mechanism was the aim of this investigation.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.
The STING pathway has emerged as a therapeutic target in tumor immunotherapy due to its ability to induce interferon responses, enhance antigen presentation and activate T cells. Despite its therapeutic potential, STING pathway-based tumor immunotherapy has been limited by challenges in poor cellular delivery, rapid degradation of STING agonists, and potential systemic toxicity. Recently, advancements in nanotechnology have tried to overcome these limitations by providing platforms for more accurate and efficient targeted delivery of agonists, more moderate sustained STING pathway activation, and more efficient immune presentation and anti-tumor immune response.
View Article and Find Full Text PDF