Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Direct optical printing of functional inorganics shows tremendous potential as it enables the creation of intricate two-dimensional (2D) patterns and affordable design and production of various devices. Although there have been recent advancements in printing processes using short-wavelength light or pulsed lasers, the precise control of the vertical thickness in printed 3D structures has received little attention. This control is vital to the diverse functionalities of inorganic thin films and their devices, as they rely heavily on their thicknesses. This lack of research is attributed to the technical intricacy and complexity involved in the lithographic processes. Herein, we present a generalized optical 3D printing process for inorganic nanoparticles using maskless digital light processing. We develop a range of photocurable inorganic nanoparticle inks encompassing metals, semiconductors, and oxides, combined with photolinkable ligands and photoacid generators, enabling the direct solidification of nanoparticles in the ink medium. Our process creates complex and large-area patterns with a vertical resolution of ∼50 nm, producing 50-nm-thick 2D films and several micrometer-thick 3D architectures with no layer height difference via layer-by-layer deposition. Through fabrication and operation of multilayered switching devices with Au electrodes and Ag-organic resistive layers, the feasibility of our process for cost-effective manufacturing of multilayered devices is demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c09787DOI Listing

Publication Analysis

Top Keywords

optical printing
12
vertical resolution
8
inorganic nanoparticles
8
nanoscale vertical
4
resolution optical
4
printing
4
inorganic
4
printing inorganic
4
nanoparticles direct
4
direct optical
4

Similar Publications

Novel 3d-printed Coaxial Light Microscope Adapter for Ophthalmic Wet Lab.

J Cataract Refract Surg

September 2025

Ophthalmology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.

Purpose: To compare the usability and training effectiveness of a 3D-printed coaxial illumination system mounted on an off-the-shelf stereo-microscope to a professional ophthalmic surgical microscope, in cataract surgery simulation.

Setting: Ophthalmology Lab, Ophthalmology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.

Design: Prospective randomized crossover study.

View Article and Find Full Text PDF

Grayscale Digital Light Processing 3D Printed Microlens for Scale-Down Self-Focusing Printing.

Small

September 2025

Guangdong Provincial Key Laboratory for Processing and Forming of Advanced Metallic Materials, South China University of Technology, Guangzhou, 510640, China.

In modern micro/nano fabrication, 3D printing technology drives industry transformation. However, existing technologies face bottlenecks in improving process efficiency and precision, while also struggling to achieve accurate fabrication of composite 3D microstructures. This study proposes a microlens self-focusing printing technique that integrates digital light processing (DLP) 3D printing with an optical microscope platform.

View Article and Find Full Text PDF

The development of novel optical self-healing materials holds significant importance for applications in anticounterfeiting and information encryption, but remains a formidable challenge. This study presents a fluorescent self-healing material designed for 2D/3D printing anticounterfeiting applications, exhibiting outstanding properties such as high transmittance, excellent mechanical strength, and remarkable self-healing efficiency. The triple dynamic bond networks provide robust mechanical and self-healing capabilities, with the polymer demonstrating a tensile strength of 26.

View Article and Find Full Text PDF

Tunable Optical Metamaterial Enables Steganography, Rewriting, and Multilevel Information Storage.

Nanomicro Lett

September 2025

State Key Laboratory of Robotics and Intelligent Systems, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China.

In the realm of secure information storage, optical encryption has emerged as a vital technique, particularly with the miniaturization of encryption devices. However, many existing systems lack the necessary reconfigurability and dynamic functionality. This study presents a novel approach through the development of dynamic optical-to-chemical energy conversion metamaterials, which enable enhanced steganography and multilevel information storage.

View Article and Find Full Text PDF

Smartphone-Based Anemia Screening Conjunctival Imaging with 3D-Printed Spacer: A Cost-Effective Geospatial Health Solution.

Curr Med Imaging

August 2025

Department of Biomedical Engineering, College of Engineering Guindy, Anna University, Chennai, 600025, Tamil Nadu, India.

Introduction: Anemia is a common blood disorder caused by a low red blood cell count, reducing blood hemoglobin. It affects children, adolescents, and adults of all genders. Anemia diagnosis typically involves invasive procedures like peripheral blood smears and complete blood count (CBC) analysis.

View Article and Find Full Text PDF