Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Comparison of chemical composition and functional properties of insoluble and soluble dietary fiber (IDF, SDF) obtained from four China cereal brans was investigated. With findings, IDFs and SDFs for rice bran (RB), wheat bran (WB), highland barely bran (HBB) and tartary buckwheat bran (TBB) contained several monosaccharides such as arabinose, galactose, glucose, xylose, and galacturonic acid. The RBIDF was shrinking and formed a rugged microscopic structure, while the structure of WBIDF was dense and flat. HBBIDF and TBBIDF showed fold and flake structure. The glucose adsorption capacity of the HBBIDF was highest among all samples, which was 3.2 mmol/g. TBBIDF exhibited the highest value of cholesterol adsorption capacity (10.5 mg/g) at pH 7.0 and maximum binding capacity (BC, 365.2 μmol/g) for cadmium at pH 7.0 among all samples, respectively. As a result, HBBIDF and TBBIDF are potential fiber-rich ingredients in functional foods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.128510 | DOI Listing |