A comprehensive review on 3D tissue models: Biofabrication technologies and preclinical applications.

Biomaterials

The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA; Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Materials R

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The limitations of traditional two-dimensional (2D) cultures and animal testing, when it comes to precisely foreseeing the toxicity and clinical effectiveness of potential drug candidates, have resulted in a notable increase in the rate of failure during the process of drug discovery and development. Three-dimensional (3D) in-vitro models have arisen as substitute platforms with the capacity to accurately depict in-vivo conditions and increasing the predictivity of clinical effects and toxicity of drug candidates. It has been found that 3D models can accurately represent complex tissue structure of human body and can be used for a wide range of disease modeling purposes. Recently, substantial progress in biomedicine, materials and engineering have been made to fabricate various 3D in-vitro models, which have been exhibited better disease progression predictivity and drug effects than convention models, suggesting a promising direction in pharmaceutics. This comprehensive review highlights the recent developments in 3D in-vitro tissue models for preclinical applications including drug screening and disease modeling targeting multiple organs and tissues, like liver, bone, gastrointestinal tract, kidney, heart, brain, and cartilage. We discuss current strategies for fabricating 3D models for specific organs with their strengths and pitfalls. We expand future considerations for establishing a physiologically-relevant microenvironment for growing 3D models and also provide readers with a perspective on intellectual property, industry, and regulatory landscape.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10843844PMC
http://dx.doi.org/10.1016/j.biomaterials.2023.122408DOI Listing

Publication Analysis

Top Keywords

comprehensive review
8
models
8
tissue models
8
preclinical applications
8
drug candidates
8
in-vitro models
8
disease modeling
8
drug
5
review tissue
4
models biofabrication
4

Similar Publications

Purpose: The purpose of this document is to review current methods for cervical ripening and to summarize the effectiveness of these approaches based on appropriately conducted outcomes-based research. This document focuses on cervical ripening in individuals with term, singleton, vertex pregnancies with membranes intact, because this is the population in whom most studies were conducted. For more information on recommended timing of delivery based on maternal, fetal, and obstetric conditions and on labor management, refer to: American College of Obstetricians and Gynecologists (ACOG) Committee Opinion No.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) represent a promising therapeutic approach in gynecologic cancers, particularly ovarian and cervical malignancies. Agents such as mirvetuximab soravtansine, and tisotumab vedotin, targeting folate receptor alpha and tissue factor, respectively, reported clinical efficacy in patients with limited options. However, their use is associated with ocular toxicities, including keratopathy, blurred vision, and dry eye, which may impact adherence and quality of life.

View Article and Find Full Text PDF

Recombinant DNA technology is widely used to produce industrially and pharmaceutically important proteins. In silico analysis, performed before executing wet lab experiments has been greatly helpful in this connection. A shift in protein analysis has been observed over the past decade, driven by advancements in bioinformatics databases, tools, software, and web servers.

View Article and Find Full Text PDF

Pterostilbene as a promising natural anticancer agent in gynecological cancers.

Med Oncol

September 2025

Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.

Gynecological cancer, encompassing cancers such as endometrial and cervical cancer, is a growing concern worldwide, with a rising incidence and significant impact on women's health. Pterostilbene (PT), a natural compound, has shown promising therapeutic potential in gynecological cancer treatment. This review aims to summarize the current state of knowledge on PT's effects in gynecological cancer, focusing on its molecular mechanisms, preclinical studies, and clinical trials.

View Article and Find Full Text PDF