98%
921
2 minutes
20
Background: Identifying patients with hepatocellular carcinoma (HCC) at high risk of recurrence after hepatectomy can help to implement timely interventional treatment. This study aimed to develop a machine learning (ML) model to predict the recurrence risk of HCC patients after hepatectomy.
Methods: We retrospectively collected 315 HCC patients who underwent radical hepatectomy at the Third Affiliated Hospital of Sun Yat-sen University from April 2013 to October 2017, and randomly divided them into the training and validation sets at a ratio of 7:3. According to the postoperative recurrence of HCC patients, the patients were divided into recurrence group and non-recurrence group, and univariate and multivariate logistic regression were performed for the two groups. We applied six machine learning algorithms to construct the prediction models and performed internal validation by 10-fold cross-validation. Shapley additive explanations (SHAP) method was applied to interpret the machine learning model. We also built a web calculator based on the best machine learning model to personalize the assessment of the recurrence risk of HCC patients after hepatectomy.
Results: A total of 13 variables were included in the machine learning models. The multilayer perceptron (MLP) machine learning model was proved to achieve optimal predictive value in test set (AUC = 0.680). The SHAP method displayed that γ-glutamyl transpeptidase (GGT), fibrinogen, neutrophil, aspartate aminotransferase (AST) and total bilirubin (TB) were the top 5 important factors for recurrence risk of HCC patients after hepatectomy. In addition, we further demonstrated the reliability of the model by analyzing two patients. Finally, we successfully constructed an online web prediction calculator based on the MLP machine learning model.
Conclusion: MLP was an optimal machine learning model for predicting the recurrence risk of HCC patients after hepatectomy. This predictive model can help identify HCC patients at high recurrence risk after hepatectomy to provide early and personalized treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687050 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e22458 | DOI Listing |
J Dent Educ
September 2025
Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China.
Background: Virtual reality (VR) and artificial intelligence (AI) technologies have advanced significantly over the past few decades, expanding into various fields, including dental education.
Purpose: To comprehensively review the application of VR and AI technologies in dentistry training, focusing on their impact on cognitive load management and skill enhancement. This study systematically summarizes the existing literature by means of a scoping review to explore the effects of the application of these technologies and to explore future directions.
Diagn Progn Res
September 2025
Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.
Background: Hospital-acquired venous thromboembolism (HA-VTE) is a leading cause of morbidity and mortality among hospitalized adults. Numerous prognostic models have been developed to identify those patients with elevated risk of HA-VTE. None, however, has met the necessary criteria to guide clinical decision-making.
View Article and Find Full Text PDFAcad Radiol
September 2025
Department of General Surgery, Abdulkadir Yuksel State Hospital, Gaziantep, Turkey (A.N.Ş.).
Anal Chim Acta
November 2025
Laser Spectroscopy Lab, Department of Physics, University of Agriculture Faisalabad, 38090, Pakistan. Electronic address:
Background: Classification of rose species and verities is a challenging task. Rose is used worldwide for various applications, including but not restricted to skincare, medicine, cosmetics, and fragrance. This study explores the potential of Laser-Induced Breakdown Spectroscopy (LIBS) for species and variety classification of rose flowers, leveraging its advantages such as minimal sample preparation, real-time analysis, and remote sensing.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, PR China; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, PR China; Laboratory for Microwave Spatial Inte
Background: X-ray fluorescence (XRF) technology is a promising method for estimating the metal element content in ores, which helps in understanding ore composition and optimizing mining and processing strategies. However, due to the presence of a large number of redundant features in XRF spectra, traditional quantitative analysis models struggle to effectively capture the nonlinear relationship between element concentration and spectral information of XRF, making it more difficult to accurately predict metal element concentrations. Thus, analyzing ore element concentrations by XRF remains a significant challenge.
View Article and Find Full Text PDF