98%
921
2 minutes
20
Anomalous diffusion phenomena have been observed in many complex physical and biological systems. One significant advance recently is the physical extension of particle's motion in a static medium to a uniformly and even nonuniformly expanding medium. The dynamic mechanism of the anomalous diffusion in the nonuniformly expanding medium has only been investigated by the approach of continuous-time random walk. To study more physical observables and to supplement the physical models of the anomalous diffusion in the expanding mediums, we characterize the nonuniformly expanding medium with a spatiotemporal dependent scale factor a(x,t) and build the Langevin picture describing the particle's motion in the nonuniformly expanding medium. Besides the existing comoving and physical coordinates, by introducing a new coordinate and assuming that a(x,t) is separable at a long-time limit, we build the relation between the nonuniformly expanding medium and the uniformly expanding one and further obtain the moments of the comoving and physical coordinates. Different forms of the scale factor a(x,t) are considered to uncover the combined effects of the particle's intrinsic diffusion and the nonuniform expansion of medium. The theoretical analyses and simulations provide the foundation for studying more anomalous diffusion phenomena in the expanding mediums.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0166613 | DOI Listing |
Increased production of Prostaglandin D2 (PGD2) is linked to development and progression of asthma and allergy. PGD2 is rapidly degraded to its metabolites, which initiate type 2 innate lymphoid cells (ILC2) migration and IL-5/IL-13 cytokine secretion in a PGD2 receptor 2 (DP2)-dependent manner. Blockade of DP2 has shown therapeutic benefit in subsets of asthma patients.
View Article and Find Full Text PDFEmerg Microbes Infect
December 2024
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.
Phys Rev E
February 2024
School of Astronautics, Beihang University, Beijing 100191, Beijing, China.
In this study, the spatiotemporal evolution of full cycle of high-intensity dc argon arc discharge at atmospheric pressure is investigated by using a transferred arc device, which is easy to be directly observed in the experiment. Combining the voltage and current waveforms with high-speed images, the full cycle evolution process of high-intensity atmospheric dc arc can be divided into five different stages: breakdown pulse stage, cathode heating stage, current climbing stage, stable arc discharge stage, and finally arc extinguishing stage. The characteristics of each different stage are analyzed in detail through the electrical properties, high-speed pictures, and spectroscopic measurements.
View Article and Find Full Text PDFChaos
November 2023
Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China.
Anomalous diffusion phenomena have been observed in many complex physical and biological systems. One significant advance recently is the physical extension of particle's motion in a static medium to a uniformly and even nonuniformly expanding medium. The dynamic mechanism of the anomalous diffusion in the nonuniformly expanding medium has only been investigated by the approach of continuous-time random walk.
View Article and Find Full Text PDFEnviron Res
November 2023
Physikalisch- Technische Bundesanstalt (PTB), Braunschweig 38116, Germany; Otto von Guericke University of Magdeburg, Institute of Aparatus and Environmental Technology, Magdeburg 39106, Germany. Electronic address:
The globally supported social distancing rules to prevent airborne transmission of COVID-19 assume small saliva droplets evaporate fast and large ones, which contain most viral copies, fall fast to the ground. However, during evaporation, solutes distribute non-uniformly within the droplets. We developed a numerical model to predict saliva droplet drying in different environments.
View Article and Find Full Text PDF