Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Identifying accurate cell markers in single-cell RNA-seq data is crucial for understanding cellular diversity and function. Localized Marker Detector (LMD) is a novel tool to identify "localized genes" - genes exclusively expressed in groups of highly similar cells - thereby characterizing cellular diversity in a multi-resolution and fine-grained manner. LMD constructs a cell-cell affinity graph, diffuses the gene expression value across the cell graph, and assigns a score to each gene based on its diffusion dynamics. LMD's candidate markers can be grouped into functional gene modules, which accurately reflect cell types, subtypes, and other sources of variation such as cell cycle status. We apply LMD to mouse bone marrow and hair follicle dermal condensate datasets, where LMD facilitates cross-sample comparisons, identifying shared and sample-specific gene signatures and novel cell populations without requiring batch effect correction or integration methods. Furthermore, we assessed the performance of LMD across nine single-cell RNA sequencing datasets, compared it with six other methods aimed at achieving similar objectives, and found that LMD outperforms the other methods evaluated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680591PMC
http://dx.doi.org/10.1101/2023.11.12.566780DOI Listing

Publication Analysis

Top Keywords

single-cell rna-seq
8
rna-seq data
8
cellular diversity
8
lmd
7
cell
5
lmd cluster-independent
4
cluster-independent multiscale
4
multiscale marker
4
marker identification
4
identification single-cell
4

Similar Publications

Background: Most RNA-seq datasets harbor genes with extreme expression levels in some samples. Such extreme outliers are usually treated as technical errors and are removed from the data before further statistical analysis. Here we focus on the patterns of such outlier gene expression to investigate whether they provide insights into the underlying biology.

View Article and Find Full Text PDF

Breast cancer is a highly heterogeneous disease with diverse outcomes, and intra-tumoral heterogeneity plays a significant role in both diagnosis and treatment. Despite its importance, the spatial distribution of intra-tumoral heterogeneity is not fully elucidated. Spatial transcriptomics has emerged as a promising tool to study the molecular mechanisms behind many diseases.

View Article and Find Full Text PDF

The ferroptosis-associated gene TIMP1 facilitates skin scar formation through the interaction with CST3 in fibroblasts.

Int Immunopharmacol

September 2025

Medical Center of Burn Plastic and Wound Repair, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China. Electronic address:

Skin scar formation is a critical pathological process in wound healing, but its underlying regulatory mechanisms remain incompletely elucidated. By integrating analyses of Bulk-RNA seq and single-cell RNA sequencing (scRNA-seq) data, we identified that ferroptosis-related biological processes potentially play a key role in skin scar formation. Further mechanistic studies demonstrated that in human dermal fibroblast cells, the ferroptosis regulator TIMP metallopeptidase inhibitor 1 (TIMP1) significantly promotes fibroblast differentiation toward a mature phenotype through interactions with cystatin C (CST3), characterized by upregulated expression of myofibroblast differentiation markers such as α-smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF), along with enhanced cell proliferation and migration abilities.

View Article and Find Full Text PDF

Classical Hodgkin Lymphoma (CHL) is characterized by a complex tumor microenvironment (TME) that supports disease progression. While immune cell recruitment by Hodgkin and Reed-Sternberg (HRS) cells is well-documented, the role of non-malignant B cells in relapse remains unclear. Using single-cell RNA sequencing (scRNA-seq) on paired diagnostic and relapsed CHL samples, we identified distinct shifts in B-cell populations, particularly an enrichment of naïve B cells and a reduction of memory B cells in early-relapse compared to late-relapse and newly diagnosed CHL.

View Article and Find Full Text PDF

Problem: Preeclampsia (PE) is a leading cause of perinatal maternal and fetal mortality. Clinical and pathological studies suggest that placental and decidual cell dysfunction may contribute to this condition. However, the pathogenesis of PE remains poorly understood.

View Article and Find Full Text PDF