98%
921
2 minutes
20
Mangrove plants demonstrate an impressive ability to tolerate environmental pollutants, but excessive levels of cadmium (Cd) can impede their growth. Few studies have focused on the effects of apoplast barriers on heavy metal tolerance in mangrove plants. To investigate the uptake and tolerance of Cd in mangrove plants, two distinct mangrove species, and , are characterized by unique apoplast barriers. The results showed that both mangrove plants exhibited the highest concentration of Cd in roots, followed by stems and leaves. The Cd concentrations in all organs of consistently exhibited lower levels than those of . In addition, displayed a reduced concentration of apparent PTS and a smaller percentage of bypass flow when compared to . The root anatomical characteristics indicated that Cd treatment significantly enhanced endodermal suberization in both and roots, and exhibited a higher degree of suberization. The transcriptomic analysis of and roots under Cd stress revealed 23 candidate genes involved in suberin biosynthesis and 8 candidate genes associated with suberin regulation. This study has confirmed that suberized apoplastic barriers play a crucial role in preventing Cd from entering mangrove roots.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674663 | PMC |
http://dx.doi.org/10.3390/plants12223786 | DOI Listing |
Mar Environ Res
September 2025
School of Biology, College of Science, University of Tehran, 1417935840, Tehran, Iran. Electronic address:
This study aimed to compare the species and functional diversity of macrobenthic communities between natural and planted mangrove ecosystems. Samples were collected from two mangrove sites in the Gulf of Oman. Physicochemical properties of water and sediment characteristics were analyzed to assess their correlation with community structure.
View Article and Find Full Text PDFArch Microbiol
September 2025
College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China.
Cystofilobasidium infirmominiatum, biotechnologically significant yeast, is increasingly garnering attention due to its superior ability to produce valuable carotenoids and lipids. Nonetheless, until now, the reference genome that governs the biosynthesis of carotenoids and lipids in C. infirmominiatum remains unreported.
View Article and Find Full Text PDFGlob Chang Biol
September 2025
Elkhorn Slough National Estuarine Research Reserve, Watsonville, California, USA.
To halt and reverse the trends of ecosystem loss and degradation under global change, nations globally are promoting ecosystem restoration. Restoration is particularly crucial to coastal wetlands (including tidal marshes, mangrove forests, and tidal flats), which are among the most important ecosystems on Earth but have been severely depleted and degraded. In this review, we explore the question of how to make restoration more effective for coastal wetlands in light of the often-overlooked dynamic nature of these transitional ecosystems between land and ocean.
View Article and Find Full Text PDFMar Environ Res
September 2025
State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, 572000, China. Electronic address:
There has been a significant reduction in natural mangrove wetlands as a result of human activities and climate change, particularly in densely populated and industrially developed regions. This situation underscores the necessity for research into the environmental behavior of trace metals in mangrove plants and their potential for phytoremediation. In this study, the environmental behaviors of seven trace metals were investigated in three wetlands in the Pearl River Delta, one of the most highly urbanized watersheds in China.
View Article and Find Full Text PDFPlant J
September 2025
State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Ecology and School of Life Sciences, Sun Yat-sen University, Guangdong, China.
Mangrove plants, originating from inland ancestors, have independently adapted to extreme intertidal zones characterized by salt and hypoxia stress. While typical mangroves exhibit specialized phenotypes, like viviparous seeds and salt secretion, atypical clades that have thrived without such traits are particularly suitable for exploring the molecular and physiological basis underlying plant adaptation to intertidal zones. We assembled a chromosome-level genome of an atypical mangrove, Scyphiphora hydrophylacea, the only mangrove species in Gentianales.
View Article and Find Full Text PDF