Graphene-Based Composites for Biomedical Applications: Surface Modification for Enhanced Antimicrobial Activity and Biocompatibility.

Biomolecules

LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.

Published: October 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The application of graphene-based materials in medicine has led to significant technological breakthroughs. The remarkable properties of these carbon materials and their potential for functionalization with various molecules and compounds make them highly attractive for numerous medical applications. To enhance their functionality and applicability, extensive research has been conducted on surface modification of graphene (GN) and its derivatives, including modifications with antimicrobials, metals, polymers, and natural compounds. This review aims to discuss recent and relevant studies related to advancements in the formulation of graphene composites, addressing their antimicrobial and/or antibiofilm properties and evaluating their biocompatibility, with a primary focus on their biomedical applications. It was concluded that GN surface modification, particularly with compounds intrinsically active against bacteria (e.g., antimicrobial peptides, silver and copper nanomaterials, and chitosan), has resulted in biomaterials with improved antimicrobial performance. Furthermore, the association of GN materials with non-natural polymers provides composites with increased biocompatibility when interfaced with human tissues, although with slightly lower antimicrobial efficacy. However, it is crucial to highlight that while modified GN materials hold huge potential, their widespread use in the medical field is still undergoing research and development. Comprehensive studies on safety, long-term effects, and stability are essential before their adoption in real-world medical scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669141PMC
http://dx.doi.org/10.3390/biom13111571DOI Listing

Publication Analysis

Top Keywords

surface modification
12
biomedical applications
8
antimicrobial
5
graphene-based composites
4
composites biomedical
4
applications surface
4
modification enhanced
4
enhanced antimicrobial
4
antimicrobial activity
4
activity biocompatibility
4

Similar Publications

Structural colors offer distinct advantages over traditional chemical colors (such as pigments and dyes), including high saturation, resistance to fading, and environmental friendliness. However, unlike traditional dyes or pigments that allow for Structural colors offer distinct advantages over traditional chemical colors (such as pigments and dyes), including high saturation, resistance to fading, and environmental friendliness. However, unlike traditional dyes or pigments that allow for arbitrary color adjustments during the coloring process, current structural color surfaces lack flexibility in control, as their colors are difficult to reprocess or adjust once formed.

View Article and Find Full Text PDF

We built a custom device to subject an antibody fragment A33 Fab to controlled stress conditions that combined pH, temperature, agitation, and LED-based light exposure in polypropylene microplates; to simulate the real-world challenges it may encounter during storage and transportation and to evaluate the key degradation routes in Fab formulations. We also explored the addition of Tween 80 as a surfactant and the impact of plate surface siliconisation. Monomer loss and fragmentation was monitored by size-exclusion chromatography, aggregate formation determined by changes in hydrodynamic radius in DLS, and chemical modifications identified through intact mass analysis by LC-MS, and N-terminal sequencing.

View Article and Find Full Text PDF

The sanitary napkin market is flourishing continuously due to increasing self-hygiene awareness in females. The commercially available sanitary napkins are mostly synthesized using petroleum based raw materials which are non-biodegradable in nature. With the growing global trend towards the adoption of eco-friendly, biodegradable and renewable raw materials, researchers are trying to design and manufacture sanitary napkins with natural, bio-based materials ensuring customer's comfort and healthcare.

View Article and Find Full Text PDF

PEGylated dendrimers for precision cancer therapy: Advances in tumor targeting, drug delivery, and clinical translation.

Biomater Adv

September 2025

Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

PEGylated dendrimers have emerged as highly adaptable nanocarriers for targeted cancer therapy, offering exceptional control over size, surface functionality, and drug loading. The covalent attachment of polyethylene glycol (PEG) chains to dendrimer surfaces improves biocompatibility, enhances circulation time, and minimizes immune clearance, facilitating passive tumor targeting through the enhanced permeability and retention (EPR) effect. These engineered nanosystems allow for precise encapsulation or conjugation of chemotherapeutic agents, nucleic acids, and imaging probes, with tunable release profiles.

View Article and Find Full Text PDF

New horizons in synthesis, functionalization, and deposition of advanced materials using multifunctional organic alkalizers.

Adv Colloid Interface Sci

September 2025

Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L8, Ontario, Canada; School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L8, Ontario, Canada. Electronic address:

This review describes new strategies in the use of multifunctional organic alkalizers (OA) for the fabrication of advanced functional materials. OA facilitate solubilization and delivery of poorly solubilized drugs through the formation of drug-OA complexes and supramolecular gels. OA are applied for the synthesis of materials for biomedical, energy storage, catalytic, photovoltaic, sensor, and electronic applications.

View Article and Find Full Text PDF