Colloids Surf B Biointerfaces
October 2025
Carbon nanotubes (CNTs) possess attractive properties for various applications. Recent research has shown that functionalizing or modifying CNTs with antimicrobial drugs, polymers, or metals can enhance their antimicrobial potential. Given the global challenge of biofilm formation, particularly on medical devices, this study explores the functionalization of multi-walled carbon nanotubes (MWCNTs) with copper (Cu-MWCNTs) and their efficacy against pre-established Staphylococcus aureus biofilms.
View Article and Find Full Text PDFBiofilms are emerging platforms for the production of valuable compounds. The present study is the first to assess the capacity of biofilms to produce curcumin through the expression of a biosynthetic pathway involving three genes: 4-coumarate-CoA ligase (), diketide-CoA synthase (), and curcumin synthase (). The effects of chemical induction with isopropyl β-d-1-thiogalactopyranoside (IPTG) and ferulic acid (FA), and the incubation temperature on biofilm formation and curcumin production were evaluated.
View Article and Find Full Text PDFRecent research efforts to mitigate the burden of biofouling in marine environments have focused on the development of environmentally friendly coatings that can provide long-lasting protective effects. In this study, the antifouling performance of novel polyurethane (PU)-based coatings containing cyclam-based Fe(III) complexes against biofilm formation was investigated. Biofilm assays were performed over 42 days under controlled hydrodynamic conditions that mimicked marine environments.
View Article and Find Full Text PDFThe ability of bacteria to adhere to and form biofilms on food contact surfaces poses serious challenges, as these may lead to the cross-contamination of food products. Biomimetic topographic surface modifications have been explored to enhance the antifouling performance of materials. In this study, the topography of two plant leaves, var.
View Article and Find Full Text PDFThe application of graphene-based materials in medicine has led to significant technological breakthroughs. The remarkable properties of these carbon materials and their potential for functionalization with various molecules and compounds make them highly attractive for numerous medical applications. To enhance their functionality and applicability, extensive research has been conducted on surface modification of graphene (GN) and its derivatives, including modifications with antimicrobials, metals, polymers, and natural compounds.
View Article and Find Full Text PDFAntibiotics (Basel)
November 2023
Chemically modified carbon nanotubes are recognized as effective materials for tackling bacterial infections. In this study, pristine multi-walled carbon nanotubes (p-MWCNTs) were functionalized with nitric acid (f-MWCNTs), followed by thermal treatment at 600 °C, and incorporated into a poly(dimethylsiloxane) (PDMS) matrix. The materials' textural properties were evaluated, and the roughness and morphology of MWCNT/PDMS composites were assessed using optical profilometry and scanning electron microscopy, respectively.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2023
Graphene has been broadly studied, particularly for the fabrication of biomedical devices, owing to its physicochemical and antimicrobial properties. In this study, the antibiofilm efficacy of graphene nanoplatelet (GNP)-based composites as coatings for urinary catheters (UCs) was investigated. GNPs were functionalized with nitrogen (N-GNP) and incorporated into a polydimethylsiloxane (PDMS) matrix.
View Article and Find Full Text PDFJ Mater Chem B
September 2023
Currently, multidrug-resistant (MDR) infections are one of the most important threats, driving the search for new antimicrobial compounds. Cationic peptide antibiotics (CPAs) and ceragenins (CSAs) contain in their structures cationic groups and adopt a facially amphiphilic conformation, conferring the ability to permeate the membranes of bacteria and fungi. Keeping these features in mind, an amine steroid, DOCA-NH2, was found to be active against reference strains and MDR isolates of Gram-positive and and Gram-negative and .
View Article and Find Full Text PDFMicroorganisms tend to adhere to food contact surfaces and form biofilms, which serve as reservoirs for bacteria that can contaminate food. As part of a biofilm, bacteria are protected from the stressful conditions found during food processing and become tolerant to antimicrobials, including traditional chemical sanitisers and disinfectants. Several studies in the food industry have shown that probiotics can prevent attachment and the consequent biofilm formation by spoilage and pathogenic microorganisms.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2023
Although carbon materials are widely used in surface engineering, particularly graphene (GP) and carbon nanotubes (CNTs), the application of these nanocomposites for the development of antibiofilm marine surfaces is still poorly documented. The aim of this study was, thus, to gather and discuss the relevant literature concerning the antifouling performance of carbon-based coatings against marine micro- and macrofoulers. For this purpose, a PRISMA-oriented systematic review was conducted based on predefined criteria, which resulted in the selection of thirty studies for a qualitative synthesis.
View Article and Find Full Text PDFNovel technologies to prevent biofilm formation on urinary tract devices (UTDs) are continually being developed, with the ultimate purpose of reducing the incidence of urinary infections. Probiotics have been described as having the ability to displace adhering uropathogens and inhibit microbial adhesion to UTD materials. This work aimed to evaluate the effect of pre-established biofilms on the adhesion of to medical-grade silicone.
View Article and Find Full Text PDFSince biofilm formation by microfoulers significantly contributes to the fouling process, it is important to evaluate the performance of marine surfaces to prevent biofilm formation, as well as understand their interactions with microfoulers and how these affect biofilm development and structure. In this study, the long-term performance of five surface materials-glass, perspex, polystyrene, epoxy-coated glass, and a silicone hydrogel coating-in inhibiting biofilm formation by cyanobacteria was evaluated. For this purpose, cyanobacterial biofilms were developed under controlled hydrodynamic conditions typically found in marine environments, and the biofilm cell number, wet weight, chlorophyll content, and biofilm thickness and structure were assessed after 49 days.
View Article and Find Full Text PDFFEMS Microbiol Ecol
April 2021
Although laboratory assays provide valuable information about the antifouling effectiveness of marine surfaces and the dynamics of biofilm formation, they may be laborious and time-consuming. This study aimed to determine the potential of short-time adhesion assays to estimate how biofilm development may proceed. The initial adhesion and cyanobacterial biofilm formation were evaluated using glass and polymer epoxy resin surfaces under different hydrodynamic conditions and were compared using linear regression models.
View Article and Find Full Text PDFAlthough high-performance carbon materials are widely used in surface engineering, with emphasis on carbon nanotubes (CNTs), the application of CNT nanocomposites on medical surfaces is poorly documented. In this study, we aimed to evaluate the antimicrobial and anti-adhesive properties of CNT-based surfaces. For this purpose, a PRISMA-oriented systematic review was conducted based on predefined criteria and 59 studies were selected for the qualitative analysis.
View Article and Find Full Text PDFMedical device-associated infections (MDAI) are a critical problem due to the increasing usage of medical devices in the aging population. The inhibition of biofilm formation through the use of probiotics has received attention from the medical field in the last years. However, this sparse knowledge has not been properly reviewed, so that successful strategies for biofilm management can be developed.
View Article and Find Full Text PDFUnderstanding the conditions affecting cyanobacterial biofilm development is crucial to develop new antibiofouling strategies and decrease the economic and environmental impact of biofilms in marine settings. In this study, we investigated the relative importance of shear forces and surface hydrophobicity on biofilm development by two coccoid cyanobacteria with different biofilm formation capacities. The strong biofilm-forming was used along with the weaker biofilm-forming sp.
View Article and Find Full Text PDFNumerous studies have explored the antibacterial properties of different types of honey from all around the world. However, the data available describing how honey acts against bacteria are few. The aim of this study was to apply a flow cytometry (FC) protocol to examine and characterize the primary effects of three varieties of honey (avocado, chestnut and polyfloral) upon physiological status of and cells to reveal their antibacterial action mechanisms.
View Article and Find Full Text PDFSeveral studies have explored the antimicrobial properties of manuka honey (MkH). However, the data available regarding antibacterial action mechanisms are scarcer. The aim of this study was to scrutinize and characterize primary effects of manuka honey (MkH) upon the physiological status of and (as Gram-positive and Gram-negative bacteria models, respectively), using flow cytometry (FC) to reveal its antibacterial action mechanisms.
View Article and Find Full Text PDFJ Med Microbiol
May 2019
One of teachers' concerns, with students in general and medical students in particular, is to ensure as much as possible that information goes from students' short-term memories to their long-term memories. The present study focuses on knowledge retention in Medical Microbiology and assesses the effectiveness of some strategies implemented for short- and long-term retention. A pre- and post-test was used to assess student's learning.
View Article and Find Full Text PDF