ASPP2 Is Phosphorylated by CDK1 during Mitosis and Required for Pancreatic Cancer Cell Proliferation.

Cancers (Basel)

Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

(1) Background: pancreatic cancer is highly lethal. The role of apoptosis-stimulating protein of p53-2 (ASPP2) in this lethal disease remains unclear. This protein belongs to the ASPP family of p53 interacting proteins. Previous studies in this lab used phosphate-binding tag (Phos-tag) sodium dodecyl sulfate (SDS) polyacrylamide gels and identified a motility upshift of the ASPP family of proteins during mitosis. (2) Purpose: this study expands on previous findings to identify the detailed phosphorylation regulation of ASPP2 during mitosis, as well as the function of ASPP2 in pancreatic cancer. (3) Methods: the Phos-tag technique was used to investigate the phosphorylation mechanism of ASPP2 during mitosis. Phospho-specific antibodies were generated to validate the phosphorylation of ASPP2, and ASPP2-inducible expression cell lines were established to determine the role of ASPP2 in pancreatic cancer. RNA sequencing (RNA-Seq) was used to uncover the downstream targets of ASPP2. (4) Results: results demonstrate that ASPP2 is phosphorylated during mitosis by cyclin-dependent kinase 1 (CDK1) at sites S562 and S704. In vitro and in vivo results show that ASPP2 is required for pancreatic cancer growth. Furthermore, the expressions of yes-associated protein (YAP)-related genes are found to be dramatically altered by ASPP2 depletion. Together, these findings reveal the phosphorylation mechanism of ASPP2 during mitosis. Collectively, results strongly indicate that ASPP2 is a potential target for abating tumor cell growth in pancreatic cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670399PMC
http://dx.doi.org/10.3390/cancers15225424DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
24
aspp2
13
aspp2 mitosis
12
aspp2 phosphorylated
8
required pancreatic
8
aspp family
8
aspp2 pancreatic
8
phosphorylation mechanism
8
mechanism aspp2
8
mitosis
6

Similar Publications

Platinum-group metal half-sandwich complexes are considered to be potential replacements of the clinically widely used platins which have several side effects and tend to cause resistance to develop. In our previous works, we used a range of 2-pyridyl-substituted N- and C-glycosyl heterocycles as N,N-chelating ligands to prepare ruthenium(II), osmium(II), iridium(III) and rhodium(III) polyhapto arene/arenyl half-sandwich complexes. Some of these complexes, particularly with the C-glucopyranosyl isoxazole derived ligand in its O-perbenzoylated form, exhibited greater anticancer efficiency than cisplatin and had minimal or negligible effects on non-transformed fibroblasts.

View Article and Find Full Text PDF

Maladaptive role of peridroplet mitochondria during lipophagy disruption in pancreatic cancer.

Biochem Biophys Res Commun

September 2025

Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba, 260-8675, Japan. Electronic address:

Pancreatic ductal adenocarcinoma (PDAC) cells exhibit high metabolic flexibility, enabling survival under glucose limitation by using alternative fuels such as fatty acids. Lipophagy, a selective form of autophagy targeting lipid droplets (LDs), supports mitochondrial respiration during such nutrient stress. Our previous study demonstrated that the LSD1 inhibitor SP-2509 disrupts lipophagy independently of LSD1 inhibition, leading to LD accumulation and ATP depletion in glycolysis-suppressed PDAC cells.

View Article and Find Full Text PDF

Hepatic reactive lymphoid hyperplasia diagnosed through post-ablation liver tumor biopsy.

Clin J Gastroenterol

September 2025

Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan.

Hepatic reactive lymphoid hyperplasia (RLH), also known as hepatic pseudolymphoma, is a rare benign condition that predominantly affects middle-aged-to-elderly women and is often associated with autoimmune disorders. The imaging features of hepatic RLH frequently mimic those of malignant hepatic tumors, such as hepatocellular carcinoma (HCC), cholangiocarcinoma, or metastatic liver tumors, making its diagnosis based solely on imaging modalities challenging, often leading to unnecessary surgical resection. However, the optimal diagnostic strategy for hepatic RLH remains controversial.

View Article and Find Full Text PDF

Purpose: We reviewed recent advancements in the characterization of intraductal oncocytic papillary neoplasm (IOPN) of the pancreas, with a specific focus on developments in immunohistochemical markers, molecular pathology, and pathogenic mechanisms over the past ten years (2015-2024). Through comprehensive analysis of current literature, we aimed to elucidate the evolving understanding of IOPN's biological behavior and diagnostic features, while identifying potential areas for future research in this distinctive pancreatic neoplasm.

Methods: English-language articles on IOPN were searched from Pubmed from the first report of IOPN of the pancreas in 2015 to 2024.

View Article and Find Full Text PDF