Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Urban air pollution is a critical public health challenge in low-and-middle-income countries (LMICs). At the same time, LMICs tend to be data-poor, lacking adequate infrastructure to monitor air quality (AQ). As LMICs undergo rapid urbanization, the socio-economic burden of poor AQ will be immense. Here we present a globally scalable two-step deep learning (DL) based approach for AQ estimation in LMIC cities that mitigates the need for extensive AQ infrastructure on the ground. We train a DL model that can map satellite imagery to AQ in high-income countries (HICs) with sufficient ground data, and then adapt the model to learn meaningful AQ estimates in LMIC cities using transfer learning. The trained model can explain up to 54% of the variation in the AQ distribution of the target LMIC city without the need for target labels. The approach is demonstrated for Accra in Ghana, Africa, with AQ patterns learned and adapted from two HIC cities, specifically Los Angeles and New York.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615387PMC
http://dx.doi.org/10.1016/j.envpol.2023.122914DOI Listing

Publication Analysis

Top Keywords

transfer learning
8
satellite imagery
8
urban air
8
air quality
8
lmic cities
8
deep transfer
4
learning satellite
4
imagery estimate
4
estimate urban
4
quality data-poor
4

Similar Publications

Preclinical stroke research faces a critical translational gap, with animal studies failing to reliably predict clinical efficacy. To address this, the field is moving toward rigorous, multicenter preclinical randomized controlled trials (mpRCTs) that mimic phase 3 clinical trials in several key components. This collective statement, derived from experts involved in mpRCTs, outlines considerations for designing and executing such trials.

View Article and Find Full Text PDF

Background: Subcellular localisation is a determining factor of protein function. Mass spectrometry-based correlation profiling experiments facilitate the classification of protein subcellular localisation on a proteome-wide scale. In turn, static localisations can be compared across conditions to identify differential protein localisation events.

View Article and Find Full Text PDF

To address the technical challenges associated with determining the chronological order of overlapping stamps and textual content in forensic document examination, this study proposes a novel non-destructive method that integrates hyperspectral imaging (HSI) with convolutional neural networks (CNNs). A multi-type cross-sequence dataset was constructed, comprising 60 samples of handwriting-stamp sequences and 20 samples of printed text-stamp sequences, all subjected to six months of natural aging. Spectral responses were collected across the 400-1000 nm range in the overlapping regions.

View Article and Find Full Text PDF

Oral cancer is a major global health burden, ranking sixth in prevalence, with oral squamous cell carcinoma (OSCC) being the most common type. Importantly, OSCC is often diagnosed at late stages, underscoring the need for innovative methods for early detection. The oral microbiome, an active microbial community within the oral cavity, holds promise as a biomarker for the prediction and progression of cancer.

View Article and Find Full Text PDF

Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).

View Article and Find Full Text PDF