Urban air pollution is a critical public health challenge in low-and-middle-income countries (LMICs). At the same time, LMICs tend to be data-poor, lacking adequate infrastructure to monitor air quality (AQ). As LMICs undergo rapid urbanization, the socio-economic burden of poor AQ will be immense.
View Article and Find Full Text PDFWe adapted an existing, spaceflight-proven, robust "electronic nose" (E-Nose) that uses an array of electrical resistivity-based nanosensors mimicking aspects of mammalian olfaction to conduct on-site, rapid screening for COVID-19 infection by measuring the pattern of sensor responses to volatile organic compounds (VOCs) in exhaled human breath. We built and tested multiple copies of a hand-held prototype E-Nose sensor system, composed of 64 chemically sensitive nanomaterial sensing elements tailored to COVID-19 VOC detection; data acquisition electronics; a smart tablet with software (App) for sensor control, data acquisition and display; and a sampling fixture to capture exhaled breath samples and deliver them to the sensor array inside the E-Nose. The sensing elements detect the combination of VOCs typical in breath at parts-per-billion (ppb) levels, with repeatability of 0.
View Article and Find Full Text PDFHigh spatial resolution information on urban air pollution levels is unavailable in many areas globally, partially due to high input data needs of existing estimation approaches. Here we introduce a computer vision method to estimate annual means for air pollution levels from street level images. We used annual mean estimates of NO and PM concentrations from locally calibrated models as labels from London, New York, and Vancouver to allow for compilation of a sufficiently large dataset (~250k images for each city).
View Article and Find Full Text PDFHigh-spatial-resolution air quality (AQ) mapping is important for identifying pollution sources to facilitate local action. Some of the most populated cities in the world are not equipped with the infrastructure required to monitor AQ levels on the ground and must rely on other sources, like satellite derived estimates, to monitor AQ. Current satellite-data-based models provide AQ mapping on a kilometer scale at best.
View Article and Find Full Text PDF