Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding how biodiversity varies from place to place is a fundamental goal of ecology and an important tool for halting biodiversity loss. Parasitic wasps (Hymenoptera) are a diverse and functionally important animal group, but spatial variation in their diversity is poorly understood. We survey a community of parasitic wasps (Ichneumonidae: Pimplinae) using Malaise traps up a mountain in the Brazilian Atlantic Rainforest, and relate the catch to biotic and abiotic habitat characteristics. We find high species richness compared with previous similar studies, with abundance, richness, and diversity peaking at low to intermediate elevation. There is a marked change in community composition with elevation. Habitat factors strongly correlated with elevation also strongly predict changes in the pimpline community, including temperature as well as the density of bamboo, lianas, epiphytes, small trees, and herbs. These results identify several possible surrogates of pimpline communities in tropical forests, which could be used as a tool in conservation. They also contribute to the growing evidence for a typical latitudinal gradient in ichneumonid species richness, and suggest that low to medium elevations in tropical regions will sometimes conserve the greatest number of species locally, but to conserve maximal biodiversity, a wider range of elevations should also be targeted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671876PMC
http://dx.doi.org/10.3390/insects14110861DOI Listing

Publication Analysis

Top Keywords

parasitic wasps
8
species richness
8
variation darwin
4
darwin wasp
4
wasp hymenoptera
4
hymenoptera ichneumonidae
4
community
4
ichneumonidae community
4
elevation
4
community elevation
4

Similar Publications

Molecular Mechanisms Underlying Parasitoid-Derived Host Manipulation Strategies.

Annu Rev Entomol

September 2025

2Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; email:

Parasitoid wasps are a diverse group of insects with a unique parasitic lifestyle that allows them to spend their lives closely interacting with their insect hosts, facilitated by parasitic effectors, including venom, polydnaviruses, and teratocytes. These effectors manipulate various aspects of insect host biology to increase the survival of the parasitoids' offspring. During the last two decades, omics and functional studies have significantly advanced our understanding of how parasitoids manipulate their hosts at the molecular level.

View Article and Find Full Text PDF

First synergistic application of nanocarrier-loaded metaflumizone and parasitic wasps: A high-efficiency green pest control strategy.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, PR China. Electronic address:

The improper use of chemical pesticides threatens ecosystems and human health, highlighting the need for sustainable alternatives. Nano-pesticides and biological control agents offer a solution, and their combination can reduce pesticide usage and improve pest control efficacy. This study utilized a star polycation (SPc) to prepare a metaflumizone nano-pesticide and combined it with the egg parasitoid (Telenomus remus) for synergistic pest management.

View Article and Find Full Text PDF

Host-microbe synergy in pesticide resilience: Rhodococcus-driven fitness compensation in chlorpyrifos-stressed Binodoxys communis.

Pestic Biochem Physiol

November 2025

Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricu

Chlorpyrifos (CPF), a widely used organophosphate insecticide in cotton cultivation for controlling Aphis gossypii, has Binodoxys communis as the primary parasitic natural enemy of A. gossypii. This study evaluated the impact of two sub-lethal CPF concentrations (LC10 and LC30) on key biological parameters across two generations, transcriptomic responses, and symbiotic bacterial communities in B.

View Article and Find Full Text PDF

Olfactory Molecular Mechanism Study on the Recognition of the Danger Signal 1-Octen-3-ol in the Parasitic Wasp .

J Agric Food Chem

September 2025

Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China.

The odor-driven behavior of parasitoids critically determines their efficacy as biological control agents. Although host-seeking mechanisms are well studied, little is known about their danger signal detection capacity. Here, we studied the synergistic action of odorant binding proteins (OBPs) and odorant receptors (ORs) while detecting the repellence of 1-octen-3-ol in .

View Article and Find Full Text PDF

Abundant arid natural habitats reduced aphid biocontrol by parasitoids: a case study of Gobi habitats in a desert-oasis farming ecosystem.

Pest Manag Sci

September 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.

Background: In arid and hyper-arid regions, natural habitats with limited water availability are characterized by sparce vegetation, low host density, and harsh climatic conditions. Whether these arid natural habitats can support natural enemies and facilitate biological control in local agroecosystems is largely unknown. In this study, we determined the effects of landscape composition (the coverage of native Gobi habitats, water bodies and the Shannon's landscape diversity index) on the abundance of mummified aphids and the aphid parasitism rate in local conventional cotton fields under the desert-oasis landscape settings in southern Xinjiang, China.

View Article and Find Full Text PDF