Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aimed to assess the ability of a real-time reverse transcription polymerase chain reaction (RT-PCR) with multiple targets to detect SARS-CoV-2 and its variants in a single test. Nasopharyngeal specimens were collected from patients in Granada, Spain, between January 2021 and December 2022. Five allele-specific RT-PCR kits were used sequentially, with each kit designed to detect a predominant variant at the time. When the Alpha variant was dominant, the kit included the HV69/70 deletion, E and N genes. When Delta replaced Alpha, the kit incorporated the L452R mutation in addition to E and N genes. When Omicron became dominant, L452R was replaced with the N679K mutation. Before incorporating each variant kit, a comparative analysis was carried out with SARS-CoV-2 whole genome sequencing (WGS). The results demonstrated that RT-PCR with multiple targets can provide rapid and effective detection of SARS-CoV-2 and its variants in a single test. A very high degree of agreement (96.2%) was obtained between the comparison of RT-PCR and WGS. Allele-specific RT-PCR assays make it easier to implement epidemiological surveillance systems for effective public health decision making.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10753446PMC
http://dx.doi.org/10.1017/S095026882300184XDOI Listing

Publication Analysis

Top Keywords

sars-cov-2 variants
12
detection sars-cov-2
8
rt-pcr multiple
8
multiple targets
8
variants single
8
single test
8
allele-specific rt-pcr
8
rt-pcr
5
evaluation combined
4
combined detection
4

Similar Publications

New SARS-CoV-2 variants continue to emerge and may cause new waves of COVID-19. Antibody evasion is a major driver of variant emergence but variants can also exhibit altered capacity to enter lung cells and to use ACE2 species orthologues for cell entry. Here, we assessed cell line tropism, usage of ACE2 orthologues and antibody evasion of variant MC.

View Article and Find Full Text PDF

A bivalent SARS-CoV-2 subunit vaccine for cats neutralizes both the original ancestral strain and BA.1 Pseudovirus carrying the 453F and 501 T mutation.

Vaccine

September 2025

College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Jiangxia Laboratory, Wuhan 430200, China. Electronic address:

The spillover and spillback of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between humans and animals, especially companion animals, threaten global public health security. However, risk assessment of SARS-CoV-2 variants infecting companion animals and the development of corresponding prevention and control technologies are lacking. The aim of this study is to assess the potential risk of enhancement of the infectivity of SARS-CoV-2 in cats owing to mutations at key sites within the spike (S) protein receptor-binding domain (RBD) region and develop an efficient vaccine to cross-neutralize high-risk SARS-CoV-2 variants.

View Article and Find Full Text PDF

Background: Obesity was a risk factor for severe COVID-19 in children during early outbreaks of ancestral SARS-CoV-2 and the Delta variant. However, the relationship between obesity and COVID-19 severity during the Omicron wave remains unclear.

Methods: This multicenter, observational study included polymerase chain r eaction-confirmed SARS-CoV-2-infected children and adolescents from Australia, Brazil, Italy, Portugal, Switzerland, Thailand, the United Kingdom and the United States hospitalized between January 1, 2020, and March 31, 2022.

View Article and Find Full Text PDF

The COVID-19 pandemic remains a global health crisis, with successive SARS-CoV-2 variants exhibiting enhanced transmissibility and immune evasion. Notably, the Omicron variant harbors extensive mutations in the spike protein's receptor-binding domain (RBD), altering viral fitness. While temperature is a critical environmental factor modulating viral stability and transmission, its molecular-level effects on variant-specific RBD-human angiotensin-converting enzyme 2 (hACE2) interactions remain underexplored.

View Article and Find Full Text PDF

Coronavirus, a large family of positive-sense RNA viruses, are responsible for both mild and severe respiratory illnesses, ranging from the common cold to life-threatening conditions. Despite significant advances in vaccine and antiviral development, the high mutability of human coronaviruses (HCoVs), such as SARS-CoV-2, presents a major challenge in treating these infections. Effective, broad-spectrum antiviral drugs are urgently needed to address both current and future HCoV outbreaks.

View Article and Find Full Text PDF