98%
921
2 minutes
20
The deep pelagic ocean is increasingly subjected to human-induced environmental change. While pelagic animals provide important ecosystem functions including climate regulation, species-specific responses to stressors remain poorly documented. Here, we investigate the effects of simulated ocean warming and sediment plumes on the cosmopolitan deep-sea jellyfish Periphylla periphylla, combining insights gained from physiology, gene expression and changes in associated microbiota. Metabolic demand was elevated following a 4 °C rise in temperature, promoting genes related to innate immunity but suppressing aerobic respiration. Suspended sediment plumes provoked the most acute and energetically costly response through the production of excess mucus (at ≥17 mg L), while inducing genes related to aerobic respiration and wound repair (at ≥167 mg L). Microbial symbionts appeared to be unaffected by both stressors, with mucus production maintaining microbial community composition. If these responses are representative for other gelatinous fauna, an abundant component of pelagic ecosystems, the effects of planned exploitation of seafloor resources may impair deep pelagic biodiversity and ecosystem functioning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663454 | PMC |
http://dx.doi.org/10.1038/s41467-023-43023-6 | DOI Listing |
Environ Microbiol
September 2025
Department Biodiversity, University of Duisburg-Essen, Essen, Germany.
Microbial communities play a crucial role in the functioning of freshwater ecosystems but are continuously threatened by climate change and anthropogenic activities. Elevated temperatures and salinisation are particularly challenging for freshwater habitats, but little is known about how microbial communities respond to the simultaneous exposure to these stressors. Here, we use mesocosm experiments and amplicon sequencing data to investigate the responses of pelagic and benthic microbial communities to temperature and salinity increases, both individually and in combination.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2025
Department of Biology, Marine Biology Section, University of Copenhagen, Helsingør, Denmark.
Due to climate change, sea ice more commonly retreats over the shelf breaks in the Arctic Ocean, impacting sea ice-pelagic-benthic coupling in the deeper basins. Nitrogen fixation (the reduction of dinitrogen gas to bioavailable ammonia by microorganisms called diazotrophs) is reported from Arctic shelf sediments but is unknown from the Arctic deep sea. We sampled five locations of deep-sea (900-1500 m) surface sediments in the central ice-covered Arctic Ocean to measure potential nitrogen fixation through long-term (> 280 days) stable-isotope (N) incubations and to study diazotroph community composition through amplicon sequencing of the functional marker gene nifH.
View Article and Find Full Text PDFMacroevolutionary trends in vertebrate morphology fundamentally shape our understanding of marine ecosystems through deep time. Body form influences interactions between organisms and their environment, dictating their locomotor capabilities and ability to hunt/escape from other species. Sharks (Elasmobranchii: Selachii) have been suggested to broadly exhibit two discrete body forms: one 'shallow-bodied' form associated with slow-moving benthic species and a 'deep-bodied' form typified by highly active pelagic taxa.
View Article and Find Full Text PDFPLoS One
September 2025
Fisheries and Oceans Canada (DFO), Freshwater Institute, Winnipeg, Manitoba, Canada.
Narwhals (Monodon monoceros) are deep-diving Arctic cetaceans that migrate seasonally between summering and wintering grounds. The Baffin Bay population overwinters in southern Baffin Bay and Davis Strait, where they are known to forage on high-energy benthic prey. Studying narwhal winter behaviour and prey preference has been challenged by their remote distribution and limited lifespan of satellite tags deployed in summer, restricting data on their habitat use and foraging strategies.
View Article and Find Full Text PDFJ Anim Ecol
August 2025
Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan.
Some large, wide-ranging teleosts and elasmobranchs are converged to have regional endothermy, retaining metabolic heat via vascular countercurrent heat exchangers. Yet, their adaptive significance remains debated. While previous studies proposed potential benefits of elevated body temperature, enhanced controllability of body temperature enabled by heat exchangers may also be important.
View Article and Find Full Text PDF