98%
921
2 minutes
20
This study focuses on analyzing the texture properties and bioelectrical impedance characteristics of frozen chicken breasts during low-temperature thawing, meanwhile, we also compared the differences in physiochemical properties. Frozen chicken breasts were thawed at 4 ± 2°C for 2, 4, 6, 8, and 10 h separately, then the physiochemical properties (color, pH, water-holding capacity, water distribution), the texture properties (easy-to-cut level), and the bioelectrical impedance were determined and analyzed. The easy-to-cut level of the samples was evaluated by the sensory panel and two indexes, one is Warner-Bratzler shear force measured by texture analysis machine, and the other is cutting speed value calculated by the consumer-oriented cutting behavior analysis using frame-by-frame video recording analysis method. These two methods were used to characterize the easy-to-cut level of the frozen samples during thawing from the industrial processing and home cooking standpoint. Strong correlations were observed between the easy-to-cut level and the bioelectrical impedance of the frozen chicken breasts during thawing. The impedance magnitude at 100 kHz showed a high correlation coefficient (R = .9417) with Warner-Bratzler shear force, and the impedance magnitude at 50 Hz showed a high correlation coefficient (R = .8658) with cutting speed. Our results indicated the acceptability of using bioelectrical impedance to evaluate the easy-to-cut thawing endpoint for both industry processing and home cooking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jtxs.12814 | DOI Listing |
Anim Sci J
September 2025
Faculty of Agriculture, Iwate University, Morioka, Japan.
Hardness of meat is one of the most important textural properties noted while eating. Bromelain, found in pineapples, is an enzyme that degrades collagen, a factor that affects meat hardness. The latter is generally evaluated based on shear strength and texture; however, such methods are destructive.
View Article and Find Full Text PDFClin Investig Arterioscler
September 2025
Department of Clinical Dietetics, Medical University of Lublin, ul. Chodzki 7, 20-059 Lublin, Poland. Electronic address:
Background: Although aggressive low-density lipoprotein cholesterol (LDL-C) reduction has demonstrated significant cardiovascular benefits, concerns have emerged regarding potential adverse effects of very low LDL-C on cellular functions, particularly membrane integrity as cholesterol constitutes an essential component of cellular membranes. The phase angle (PhA), derived from bioelectrical impedance analysis (BIA) reflects cellular membranes integrity and nutritional status. The MALIPID study aimed to assess if LDL-C levels are associated with PhA in high cardiovascular risk patients.
View Article and Find Full Text PDFPhysiol Rep
September 2025
Center for Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Settsu, Japan.
This study investigated the association between parameters derived from bioelectrical impedance spectroscopy (BIS) and arterial stiffness, as measured using carotid-femoral pulse wave velocity (cfPWV) and brachial-ankle pulse wave velocity (baPWV) pulse wave velocities. Data from 292 Japanese adults were analyzed. BIS was used to assess the phase angle (PhA), extracellular water to intracellular water ratio (ECW/ICW), and body cell mass-to-free fat mass ratio (BCM/FFM).
View Article and Find Full Text PDFJ Atheroscler Thromb
September 2025
Department of Health Promotion Center, the First Affiliated Hospital with Nanjing Medical University.
Aims: The phase angle (PhA) derived from a bioelectrical impedance analysis (BIA) is a risk factor for cardiovascular disease (CVD). The present study explored the relationship between PhA and the progression of subclinical atherosclerosis in asymptomatic adults.
Methods: Two cross-sectional studies were performed on 15579 participants who underwent carotid ultrasound testing and a BIA as well as 8228 participants who underwent brachial ankle pulse wave velocity (baPWV) testing and a BIA.
Ear Hear
September 2025
Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Objectives: In patients with cochlear implants, tools for measuring intracochlear electric environment as well as neural responses to electrical stimulation are widely available. This study aimed to investigate the possible correlation of changes in the responsiveness of the auditory nerve measured by neural response telemetry with changes in the peak and spread of the intracochlear electric field measured by transimpedance matrix (TIM) in patients implanted with straight electrode arrays.
Design: In this retrospective study, we analyzed a cohort of 144 ears of 113 consecutive patients who were implanted with Slim Straight electrode array (Cochlear Ltd.