98%
921
2 minutes
20
Chimeric Antigen Receptor (CAR) T cells directed to B cell maturation antigen (BCMA) mediate profound responses in patients with multiple myeloma, but most patients do not achieve long-term complete remissions. In addition, recent evidence suggests that high-affinity binding to BCMA can result in on-target, off-tumor activity in the basal ganglia and can lead to fatal Parkinsonian-like disease. Here we develop CAR T cells against multiple myeloma using a binder to targeting transmembrane activator and CAML interactor (TACI) in mono and dual-specific formats with anti-BCMA. These CARs have robust, antigen-specific activity in vitro and in vivo. We also show that TACI RNA expression is limited in the basal ganglia, which may circumvent some of the toxicities recently reported with BCMA CARs. Thus, single-targeting TACI CARs may have a safer toxicity profile, whereas dual-specific BCMA-TACI CAR T cells have potential to avoid the antigen escape that can occur with single-antigen targeting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657357 | PMC |
http://dx.doi.org/10.1038/s41467-023-43416-7 | DOI Listing |
Cancer Immunol Res
September 2025
Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States.
Antibody-based therapies have revolutionized cancer treatment but have several limitations. These include: down-regulation of the target antigen; mutation of the target epitope; or in the case of antibody drug conjugates (ADCs), resistance to the chemotherapy warhead. Since TROP2-targeted therapy with ADCs yields responses in TROP2+ solid tumors but lacks the durability observed with other immunotherapy-based approaches, we developed novel TROP2-targeting chimeric antigen receptor (CAR) T cells as an alternative.
View Article and Find Full Text PDFCancer Res Commun
September 2025
Fred Hutchinson Cancer Center, Seattle, WA, United States.
Metastatic and relapsed osteosarcoma (OS) remains difficult to treat despite advanced surgical techniques, intensified chemotherapy, and targeted therapies. Adoptive immunotherapies such as chimeric antigen receptor (CAR) T cells, are in their nascent stage, but remain a viable therapeutic strategy for patients with aggressive solid tumors such as OS. Folate receptor- (FOLR1) has been functionally implicated in OS pathophysiology, providing rationale as a potential therapeutic target.
View Article and Find Full Text PDFFront Immunol
September 2025
Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
Background: Multiplex gene-edited chimeric antigen receptor (CAR) T-cell therapies face significant challenges, including potential oncogenic risks associated with double-strand DNA breaks. Targeted microRNAs (miRNAs) may provide a safer, functional, and tunable alternative for gene silencing without the need for DNA editing.
Methods: As a proof of concept for multiplex gene silencing, we employed an optimized miRNA backbone and gene architecture to silence T-cell receptor (TCR) and major histocompatibility complex class I (MHC-I) in mesothelin-directed CAR (M5CAR) T cells.
Front Immunol
September 2025
Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China.
CAR-T cell therapy has been proven effective in various autoimmune diseases, with most studies utilizing lentiviral-transduced CAR-T cells. In recent years, retroviral vector-transduced CAR-T cells-characterized by a high positivity rate, stable cell lines, and lower plasmid requirements-have attracted increasing attention. This article presents a complex case of a patient with SLE combined with APS and TBIRS.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia.
Background: Disialoganglioside (GD2) is a tumor-associated antigen that is highly expressed in various neuroectodermal cancers, including melanoma. While chimeric antigen receptor (CAR) T-cell immunotherapy has demonstrated remarkable success in treating hematologic neoplasms, the identification of suitable targets remains a major obstacle in translating this approach to solid tumors.
Methods: Peripheral blood T lymphocytes from six healthy donors were used to generate GD2-specific CAR T cells via retroviral transduction.