Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Prostate cancer is a leading cause of cancer-related deaths among men worldwide. Docetaxel chemotherapy has proven effective in improving overall survival in patients with castration-resistant prostate cancer (CRPC), but drug resistance remains a considerable clinical challenge.

Methods: We explored the role of Ribonucleotide reductase subunit M2 (RRM2), a gene associated with senescence, in the sensitivity of prostate cancer to docetaxel. We evaluated the RRM2 expression, docetaxel resistance, and ANXA1 expression in prostate cancer cell lines and tumour xenografts models. In addition, We assessed the impact of RRM2 knockdown, ANXA1 over-expression, and PI3K/AKT pathway inhibition on the sensitivity of prostate cancer cells to docetaxel. Furthermore, we assessed the sensitivity of prostate cancer cells to the combination treatment of COH29 and docetaxel.

Results: Our results demonstrated a positive association between RRM2 expression and docetaxel resistance in prostate cancer cell lines and tumor xenograft models. Knockdown of RRM2 increased the sensitivity of prostate cancer cells to docetaxel, suggesting its role in mediating resistance. Furthermore, we observed that RRM2 stabilizes the expression of ANXA1, which in turn activates the PI3K/AKT pathway and contributes to docetaxel resistance. Importantly, we found that the combination treatment of COH29 and docetaxel resulted in a synergistic effect, further augmenting the sensitivity of prostate cancer cells to docetaxel.

Conclusion: Our findings suggest that RRM2 regulates docetaxel resistance in prostate cancer by stabilizing ANXA1-mediated activation of the PI3K/AKT pathway. Targeting RRM2 or ANXA1 may offer a promising therapeutic strategy to overcome docetaxel resistance in prostate cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648385PMC
http://dx.doi.org/10.1186/s13578-023-01157-6DOI Listing

Publication Analysis

Top Keywords

prostate cancer
48
sensitivity prostate
20
docetaxel resistance
20
cancer cells
16
prostate
12
cancer
12
pi3k/akt pathway
12
resistance prostate
12
docetaxel
11
rrm2
9

Similar Publications

Background: Rhabdomyosarcoma (RMS) typically responds well to a combination of treatments with favorable prognosis in children 1 to 9 years old. However, infants may fare worse due to receiving less aggressive local therapy for concerns about long-term effects of surgery/radiation. This study investigates the clinical characteristics, treatment approach, and survival outcomes of RMS in children under 2.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.

View Article and Find Full Text PDF

Human Kallikrein 2 (KLK2) is a prostate cancer tissue specific protein that is regulated by androgen receptor (AR) signaling. KLK2 was not previously recognized as a therapeutic target as it is secreted. It has now been demonstrated that KLK2 is expressed on the cell surface and targetable by various methodologies.

View Article and Find Full Text PDF

This study focuses on designing and developing a novel three-dimensional porphyrinic covalent organic framework (3D-Por-COF) to enhance anticancer sono-photodynamic therapy (SPDT). Leveraging the unique structural advantages of 3D COFs, this work addresses the limitations of traditional 2D-Por-COFs, particularly regarding reactive oxygen species (ROS) production and therapeutic efficacy. The newly developed 3D-Por-COF demonstrated significantly higher ROS generation under combined sonodynamic and photodynamic conditions, leading to an improved therapeutic effect against prostate cancer cells.

View Article and Find Full Text PDF

Importance: Patients with advanced cancer frequently receive broad-spectrum antibiotics, but changing use patterns across the end-of-life trajectory remain poorly understood.

Objective: To describe the patterns of broad-spectrum antibiotic use across defined end-of-life intervals in patients with advanced cancer.

Design, Setting, And Participants: This nationwide, population-based, retrospective cohort study used data from the South Korean National Health Insurance Service database to examine broad-spectrum antibiotic use among patients with advanced cancer who died between July 1, 2002, and December 31, 2021.

View Article and Find Full Text PDF