98%
921
2 minutes
20
A benzoquinone-embedded aza-fused covalent organic framework (BQ COF) with the maximum loading of redox-active units per molecule was employed as a cathode for lithium-ion batteries (LIBs) to achieve high energy and power densities. The synthesis was optimized to obtain high crystallinity and improved electrochemical performance. Synthesis at moderate temperature followed by a solid-state reaction was found to be particularly useful for achieving good crystallinity and the activation of the COF. When used as a cathode for LIBs, very high discharge capacities of 513, 365, and 234 mAh g were obtained at 0.1C, 1C, and 10C, respectively, showing a remarkable rate performance. More than 70% of the initial capacity was retained after 1000 cycles when the cathode was investigated for cyclic performance at 2.5C. We demonstrated that a straightforward heat treatment led to enhanced crystallinity, an optimized structure, and favorable morphology, resulting in enhanced electrode kinetics and an improved overall electrochemical behavior. A comparative study was conducted involving an aza-fused COF lacking carbonyl groups (TAB COF) and a small molecule containing phenazine and carbonyl (3BQ), providing useful insights into new material design. A full cell was assembled with graphite as the anode to assess the commercial feasibility of BQ COF, and a discharge capacity of 240 mAh g was obtained at 0.5C. Furthermore, a pouch-type cell with a high discharge capacity and an excellent rate performance was assembled, demonstrating the practical applicability of our designed cathode. Considering the entire mass of the working electrode, a specific energy density of 492 Wh kg and a power density of 492 W kg were achieved at the high current density of 1C, which are comparable to those of commercially available cathodes. These results highlight the promise of organic electrode materials for next-generation lithium-ion batteries. Furthermore, this study provides a systematic approach for simultaneously designing organic materials with high power and energy densities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c11998 | DOI Listing |
Plant Biol (Stuttg)
September 2025
Department of Botany and Center for Biotechnology, Plant Physiology Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
Erythrina velutina is a tree that thrives in the shallow rocky soils of the dry and hot Caatinga, a unique Brazilian biome. It is rich in specialized metabolites with medicinal properties. Indeed, alkaloids and flavonoids are phytochemical markers of the genus.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America.
Nitrogen (N) fixation with non-thermal plasmas has been proposed as a sustainable alternative to meet growing N fertilizer demands for agriculture. This technology generates Plasma Activated Water (PAW) with a range of chemical compositions, including different concentrations of nitrate (NO₃⁻) and hydrogen peroxide (H2O2), among other compounds. Potential use of PAW as an effective crop fertilizer necessitates a robust understanding of the underlying biology of the plant, which is not yet available.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
September 2025
Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
Heat shock protein family A member 4-like (HSPA4L) has been shown to be overexpressed in osteoarthritis (OA) patients, but its role in OA process still unknown. Chondrocytes were stimulated with interleukin-1β (IL-1β) to mimic OA cell model in vitro, and rat was injected with monosodium iodoacetate (MIA) to construct OA rat model in vivo. The expression of HSPA4L, methyltransferase-like 3 (METTL3) and extracellular matrix (ECM)-related markers was examined by qRT-PCR or western blot.
View Article and Find Full Text PDFStem Cells Int
August 2025
R&D Center, Wuhan Hamilton Biotechnology Co. Ltd, Wuhan, Hubei, China.
Osteoarthritis (OA) is the leading joint disease that causes joint pain and disability. Despite increasing progress regarding the therapeutic potential of human umbilical cord mesenchymal stem cells (UC-MSCs) for OA, effective strategies for the treatment of OA using UC-MSCs have not yet been developed in clinical practice. Our present study has proven that the early stage in OA rats is the main development stage of nod-like receptor heat protein domain protein 3 (NLRP3)-mediated synovial inflammation.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Ultrasonic Imaging, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China.
Background: Due to the complex structure and variable microenvironment in the progression of bladder cancer, the efficacy of traditional treatment methods such as surgery and chemotherapy is limited. Tumor residual, recurrence and metastasis are still difficult to treat. The integration of diagnosis and treatment based on nanoparticles can offer the potential for precise tumor localization and real-time therapeutic monitoring.
View Article and Find Full Text PDF