98%
921
2 minutes
20
MRI scanner hardware, field strengths, and sequence parameters are major variables in diffusion studies of the spinal cord. Reliability between scanners is not well known, particularly for the thoracic cord. DTI data was collected for the entire cervical and thoracic spinal cord in thirty healthy adult subjects with different MR vendors and field strengths. DTI metrics were extracted and averaged for all slices within each vertebral level. Metrics were examined for variability and then harmonized using longitudinal ComBat (longComBat). Four scanners were used: Siemens 3 T Prisma, Siemens 1.5 T Avanto, Philips 3 T Ingenia, Philips 1.5 T Achieva. Average full cord diffusion values/standard deviation for all subjects and scanners were FA: 0.63, σ = 0.10, MD: 1.11, σ = 0.12 × 10 mm/s, AD: 1.98, σ = 0.55 × 10 mm/s, RD: 0.67, σ = 0.31 × 10 mm/s. FA metrics averaged for all subjects by level were relatively consistent across scanners, but large variability was found in diffusivity measures. Coefficients of variation were lowest in the cervical region, and relatively lower for FA than diffusivity measures. Harmonized metrics showed greatly improved agreement between scanners. Variability in DTI of the spinal cord arises from scanner hardware differences, pulse sequence differences, physiological motion, and subject compliance. The use of longComBat resulted in large improvement in agreement of all DTI metrics between scanners. This study shows the importance of harmonization of diffusion data in the spinal cord and potential for longitudinal and multisite clinical research and clinical trials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643628 | PMC |
http://dx.doi.org/10.1038/s41598-023-46465-6 | DOI Listing |
Int J Plant Anim Environ Sci
August 2025
Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
Neurological disorders, such as Alzheimer's disease, Parkinson's disease, epilepsy, spinal cord injuries, and traumatic brain injuries, represent substantial global health challenges due to their chronic and often progressive nature. While allopathic medicine offers a range of pharmacological interventions aimed at managing symptoms and mitigating disease progression, it is accompanied by limitations, including adverse side effects, the development of drug resistance, and incomplete efficacy. In parallel, phytochemicals-bioactive compounds derived from plants-are receiving increased attention for their potential neuroprotective, antioxidant, and anti-inflammatory properties.
View Article and Find Full Text PDFFront Rehabil Sci
August 2025
Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.
Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.
Brain Spine
January 2025
Department of Neurosurgery, Oslo University Hospital, Oslo, Norway.
Purpose: Isolated spinal aneurysms (iSAs) are rare, with an uncertain natural history and no established treatment guidelines. Multiple iSAs are even more uncommon, complicating treatment decisions.
Methods: This study reports a case of a ruptured radiculo-pial artery aneurysm in a patient with multiple iSAs, treated with surgical excision, assisted by intraoperative neurophysiological monitoring (IONM).
Front Neurosci
August 2025
First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
Background: Spinal cord injury (SCI) often leads to severe motor and sensory impairments, and current treatment methods have not achieved complete neural repair. In recent years, exosomes have become a research focus in the treatment of nerve injuries due to their important roles in intercellular information transfer, immune regulation, and neural repair. Our study conducts a scientometric analysis to map the research landscape related to exosomes in SCI.
View Article and Find Full Text PDFMed Phys
September 2025
Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan.
Background: Multi-ion radiotherapy using carbon, oxygen, and neon ions aims to improve local control by increasing dose-averaged linear energy transfer (LET) in the target. However, there has been limited understanding of how to utilize variables for multi-ion treatment planning such as the selection and arrangement of ion species.
Purpose: An in silico study was conducted to explore the feasibility of increasing a minimum LET, and the optimal selection and arrangement of ion species in multi-ion therapy for increasing LET in tumors of varying sizes mimicking bone and soft tissue sarcomas (BSTS).