98%
921
2 minutes
20
Vascular ageing, characterized by structural and functional changes in blood vessels of which arterial stiffness and endothelial dysfunction are key components, is associated with increased risk of cardiovascular and other age-related diseases. As the global population continues to age, understanding the underlying mechanisms and developing effective therapeutic interventions to mitigate vascular ageing becomes crucial for improving cardiovascular health outcomes. Therefore, this review provides an overview of the current knowledge on pharmacological modulation of vascular ageing, highlighting key strategies and promising therapeutic targets. Several molecular pathways have been identified as central players in vascular ageing, including oxidative stress and inflammation, the renin-angiotensin-aldosterone system, cellular senescence, macroautophagy, extracellular matrix remodelling, calcification, and gasotransmitter-related signalling. Pharmacological and dietary interventions targeting these pathways have shown potential in ameliorating age-related vascular changes. Nevertheless, the development and application of drugs targeting vascular ageing is complicated by various inherent challenges and limitations, such as certain preclinical methodological considerations, interactions with exercise training and sex/gender-related differences, which should be taken into account. Overall, pharmacological modulation of endothelial dysfunction and arterial stiffness as hallmarks of vascular ageing, holds great promise for improving cardiovascular health in the ageing population. Nonetheless, further research is needed to fully elucidate the underlying mechanisms and optimize the efficacy and safety of these interventions for clinical translation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arr.2023.102122 | DOI Listing |
Cardiol Rev
September 2025
From the Department of General Medicine, J.S.S. Medical College, JSS Academy of Higher Education and Research, Mysuru, India.
Heart failure with preserved ejection fraction (HFpEF) accounts for nearly half of all heart failure cases and is increasing in prevalence due to aging populations and comorbidities such as hypertension and diabetes. While echocardiography remains the diagnostic cornerstone, many patients with preserved ejection fraction present with nonspecific symptoms and ambiguous diastolic indices, leading to diagnostic uncertainty and therapeutic delay. Arterial stiffness-quantified by pulse wave velocity, augmentation index, and cardio-ankle vascular index)-is emerging as a key contributor to HFpEF pathophysiology.
View Article and Find Full Text PDFFront Mol Neurosci
August 2025
Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, United States.
Introduction: Endothelial-to-mesenchymal transition (EndoMT), cell death, and fibrosis are increasingly recognized as contributing factors to Alzheimer's disease (AD) pathology, but the underlying transcriptomic mechanisms remain poorly defined. This study aims to elucidate transcriptomic changes associated with EndoMT, diverse cell death pathways, and fibrosis in AD using the 3xTg-AD mouse model.
Methods: Using RNA-seq data and knowledge-based transcriptomic analysis on brain tissues from the 3xTg-AD mouse model of AD.
NPJ Biol Phys Mech
September 2025
Department of Biomedical Engineering, Boston University, Boston, MA USA.
The lung undergoes continuous remodeling throughout normal development and aging, including changes to alveolar and capillary structure and function. While histological methods allow for static analysis of these age-related changes, characterizing the changes that occur in response to mechanical stimuli remains difficult, particularly over a dynamic, physiologically relevant range in a functioning lung. Alveolar and capillary distension - the change in diameter of alveoli and capillaries, respectively, in response to pressure changes - is one such process, where dynamically controlling and monitoring the diameter of the same capillary or alveolus is essential to inferring its mechanical properties.
View Article and Find Full Text PDFJ Geriatr Cardiol
August 2025
Family Medicine Clinic, Obesity, Metabolism and Nutrition Center and Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.