A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Micromechanics of lung capillaries across mouse lifespan and in positive- vs negative-pressure ventilation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The lung undergoes continuous remodeling throughout normal development and aging, including changes to alveolar and capillary structure and function. While histological methods allow for static analysis of these age-related changes, characterizing the changes that occur in response to mechanical stimuli remains difficult, particularly over a dynamic, physiologically relevant range in a functioning lung. Alveolar and capillary distension - the change in diameter of alveoli and capillaries, respectively, in response to pressure changes - is one such process, where dynamically controlling and monitoring the diameter of the same capillary or alveolus is essential to inferring its mechanical properties. We overcome these limitations by utilizing the recently developed crystal ribcage to image the alveoli and vasculature of a functional mouse lung across the lifespan in postnatal (6-7 days), young adult (12-18 weeks), and aged (20+ months) mice. Using a range of biologically relevant vascular (0-15 cmHO) and transpulmonary (3-12 cm HO) pressures, we directly quantify vascular and alveolar distention in the functional lung as we precisely adjust pulmonary pressures. Our results show differences in age-related alveolar and vascular distensibility: when we increase transpulmonary alveolar or vascular pressure, vessels in postnatal lungs expand less and undergo less radial and axial strain under each respective pressure type, suggesting stiffer capillaries than in older lungs. However, while vessels in young adult and aged lungs respond similarly to variations in vascular pressure, differences in elasticity start to emerge at the alveolar scale in response to transpulmonary alveolar pressure changes. Our results further indicate that differing effects of ventilation mode (i.e., positive vs. negative) present themselves at the capillary level, with vessels under positive pressure undergoing more compression than when under negative-pressure conditions. These findings contribute both to the understanding of the functional changes that occur within the lung across the lifespan, as well as to the debate of ventilation effects on lung microphysiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408335PMC
http://dx.doi.org/10.1038/s44341-025-00026-2DOI Listing

Publication Analysis

Top Keywords

alveolar capillary
8
changes occur
8
pressure changes
8
lung lifespan
8
young adult
8
alveolar vascular
8
transpulmonary alveolar
8
vascular pressure
8
alveolar
7
lung
6

Similar Publications