A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A self-supervised classification model for endometrial diseases. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Ultrasound imaging is the preferred method for the early diagnosis of endometrial diseases because of its non-invasive nature, low cost, and real-time imaging features. However, the accurate evaluation of ultrasound images relies heavily on the experience of radiologist. Therefore, a stable and objective computer-aided diagnostic model is crucial to assist radiologists in diagnosing endometrial lesions.

Methods: Transvaginal ultrasound images were collected from multiple hospitals in Quzhou city, Zhejiang province. The dataset comprised 1875 images from 734 patients, including cases of endometrial polyps, hyperplasia, and cancer. Here, we proposed a based self-supervised endometrial disease classification model (BSEM) that learns a joint unified task (raw and self-supervised tasks) and applies self-distillation techniques and ensemble strategies to aid doctors in diagnosing endometrial diseases.

Results: The performance of BSEM was evaluated using fivefold cross-validation. The experimental results indicated that the BSEM model achieved satisfactory performance across indicators, with scores of 75.1%, 87.3%, 76.5%, 73.4%, and 74.1% for accuracy, area under the curve, precision, recall, and F1 score, respectively. Furthermore, compared to the baseline models ResNet, DenseNet, VGGNet, ConvNeXt, VIT, and CMT, the BSEM model enhanced accuracy, area under the curve, precision, recall, and F1 score in 3.3-7.9%, 3.2-7.3%, 3.9-8.5%, 3.1-8.5%, and 3.3-9.0%, respectively.

Conclusion: The BSEM model is an auxiliary diagnostic tool for the early detection of endometrial diseases revealed by ultrasound and helps radiologists to be accurate and efficient while screening for precancerous endometrial lesions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10725391PMC
http://dx.doi.org/10.1007/s00432-023-05467-7DOI Listing

Publication Analysis

Top Keywords

endometrial diseases
12
bsem model
12
classification model
8
endometrial
8
ultrasound images
8
diagnosing endometrial
8
accuracy area
8
area curve
8
curve precision
8
precision recall
8

Similar Publications