Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chiral metal-organic materials, CMOMs, are of interest as they can offer selective binding sites for chiral guests. Such binding sites can enable CMOMs to serve as chiral crystalline sponges (CCSs) to determine molecular structure and/or purify enantiomers. We recently reported on the chiral recognition properties of a homochiral cationic diamondoid, dia, network {[Ni(-IDEC)(bipy)(HO)][NO]} (-IDEC = -indoline-2-carboxylicate, bipy = 4,4'-bipyridine), . The modularity of means there are five feasible approaches to fine-tune structures and properties via substitution of one or more of the following components: metal cation (Ni); bridging ligand (-IDEC); linker (bipy); extra-framework anion (NO); and terminal ligand (HO). Herein, we report the effect of anion substitution on the CCS properties of by preparing and characterizing {[Ni(-IDEC)(bipy)(HO)][BF]}, . The chiral channels in enabled it to function as a CCS for determination of the absolute crystal structures of both enantiomers of three chiral compounds: 1-phenyl-1-butanol (1P1B); methyl mandelate (MM); ethyl mandelate (EM). Chiral resolution experiments revealed to be highly selective toward the -isomers of MM and EM with enantiomeric excess, ee, values of 82.6 and 78.4%, respectively. The ee measured for -EM surpasses the 64.3% exhibited by and far exceeds that of (6.0%). Structural studies of the binding sites in provide insight into their high enantioselectivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626566PMC
http://dx.doi.org/10.1021/acs.cgd.3c00857DOI Listing

Publication Analysis

Top Keywords

binding sites
12
extra-framework anion
8
anion substitution
8
chiral
8
chiral crystalline
8
properties
4
substitution properties
4
properties chiral
4
crystalline sponge
4
sponge chiral
4

Similar Publications

Construction of a bacterial surface display system using split green fluorescent protein (GFP) in Escherichia coli.

Biotechnol Lett

September 2025

Department of Chemical Engineering, Hongik University, Sangsu-dong, Mapo-gu, Seoul, 04066, Republic of Korea.

The cell surface display system employs carrier proteins to present target proteins on the outer membrane of cells. This system enables functional proteins to be exposed on the exterior of living cells without cell lysis, allowing direct interaction with the surrounding environment. A major limitation of conventional approaches is the difficulty in displaying large-sized enzymes or antibodies, despite their critical roles in applications requiring functional domains that must remain intact, such as catalytic or antigen-binding sites.

View Article and Find Full Text PDF

Durotaxis is a driver and potential therapeutic target in lung fibrosis and metastatic pancreatic cancer.

Nat Cell Biol

September 2025

Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Durotaxis, cell migration along stiffness gradients, is linked to embryonic development, tissue repair and disease. Despite solid in vitro evidence, its role in vivo remains largely speculative. Here we demonstrate that durotaxis actively drives disease progression in vivo in mouse models of lung fibrosis and metastatic pancreatic cancer.

View Article and Find Full Text PDF

A clinical and genotype-phenotype analysis of MACF1 variants.

Am J Hum Genet

September 2025

Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam 3000 CA, the Netherlands.

Microtubule-actin cross-linking factor 1 (MACF1) is a large protein of the spectraplakin family, which is essential for brain development. MACF1 interacts with microtubules through the growth arrest-specific 2 (Gas2)-related (GAR) domain. Heterozygous MACF1 missense variants affecting the zinc-binding residues in this domain result in a distinctive cortical and brain stem malformation.

View Article and Find Full Text PDF

High-throughput screening identifies a dual-activity inhibitor of OXCT1 for hepatocellular carcinoma therapy.

Bioorg Chem

September 2025

State Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China;

3-Oxoacid CoA-transferase 1 (OXCT1) plays a crucial role in hepatocellular carcinoma (HCC) progression through its ketolytic and succinyltransferase activities. Despite its potential as a therapeutic target, no small molecules have been developed to inhibit the dual enzymatic activities of OXCT1 specifically. In this study, our structural analysis revealed that the active sites for both enzymatic functions of OXCT1 are located in the same pocket.

View Article and Find Full Text PDF

The myristoylated preS1 domain (myr-preS1) of the hepatitis B virus (HBV) large surface protein is essential for binding to the receptor protein, Na/taurocholate co-transporting polypeptide (NTCP), and for the subsequent internalization of the virus-receptor complex. NTCP, which is expressed in hepatocytes, plays a physiological role in hepatic bile acid transport. Recent cryo-electron microscopy structures of the myr-preS1-NTCP complex were used to analyze virus-receptor interactions at the molecular level.

View Article and Find Full Text PDF